| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdslmd.1 |  |-  A e. CH | 
						
							| 2 |  | mdslmd.2 |  |-  B e. CH | 
						
							| 3 |  | mdslmd.3 |  |-  C e. CH | 
						
							| 4 |  | mdslmd.4 |  |-  D e. CH | 
						
							| 5 |  | ineq1 |  |-  ( x = if ( x e. CH , x , 0H ) -> ( x i^i B ) = ( if ( x e. CH , x , 0H ) i^i B ) ) | 
						
							| 6 | 5 | sseq1d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( x i^i B ) C_ ( D i^i B ) <-> ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) ) ) | 
						
							| 7 | 5 | oveq1d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( x i^i B ) vH ( C i^i B ) ) = ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) ) | 
						
							| 8 | 7 | ineq1d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) ) | 
						
							| 9 | 5 | oveq1d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) | 
						
							| 10 | 8 9 | sseq12d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) | 
						
							| 11 | 6 10 | imbi12d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) <-> ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) ) | 
						
							| 12 |  | sseq2 |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( C i^i D ) C_ x <-> ( C i^i D ) C_ if ( x e. CH , x , 0H ) ) ) | 
						
							| 13 |  | sseq1 |  |-  ( x = if ( x e. CH , x , 0H ) -> ( x C_ D <-> if ( x e. CH , x , 0H ) C_ D ) ) | 
						
							| 14 | 12 13 | anbi12d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) <-> ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) ) ) | 
						
							| 15 |  | oveq1 |  |-  ( x = if ( x e. CH , x , 0H ) -> ( x vH C ) = ( if ( x e. CH , x , 0H ) vH C ) ) | 
						
							| 16 | 15 | ineq1d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( x vH C ) i^i D ) = ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) ) | 
						
							| 17 |  | oveq1 |  |-  ( x = if ( x e. CH , x , 0H ) -> ( x vH ( C i^i D ) ) = ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) | 
						
							| 18 | 16 17 | sseq12d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) <-> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) | 
						
							| 19 | 14 18 | imbi12d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) <-> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) | 
						
							| 20 | 11 19 | imbi12d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) <-> ( ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) ) | 
						
							| 21 | 20 | imbi2d |  |-  ( x = if ( x e. CH , x , 0H ) -> ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) <-> ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) ) ) | 
						
							| 22 |  | h0elch |  |-  0H e. CH | 
						
							| 23 | 22 | elimel |  |-  if ( x e. CH , x , 0H ) e. CH | 
						
							| 24 | 1 2 3 4 23 | mdslmd1lem2 |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) C_ ( D i^i B ) -> ( ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( if ( x e. CH , x , 0H ) i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ if ( x e. CH , x , 0H ) /\ if ( x e. CH , x , 0H ) C_ D ) -> ( ( if ( x e. CH , x , 0H ) vH C ) i^i D ) C_ ( if ( x e. CH , x , 0H ) vH ( C i^i D ) ) ) ) ) | 
						
							| 25 | 21 24 | dedth |  |-  ( x e. CH -> ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( x e. CH /\ ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) ) -> ( ( ( x i^i B ) C_ ( D i^i B ) -> ( ( ( x i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( x i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ x /\ x C_ D ) -> ( ( x vH C ) i^i D ) C_ ( x vH ( C i^i D ) ) ) ) ) |