| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdslmd.1 |  |-  A e. CH | 
						
							| 2 |  | mdslmd.2 |  |-  B e. CH | 
						
							| 3 |  | mdslmd.3 |  |-  C e. CH | 
						
							| 4 |  | mdslmd.4 |  |-  D e. CH | 
						
							| 5 |  | mdslmd1lem.5 |  |-  R e. CH | 
						
							| 6 |  | ssrin |  |-  ( R C_ D -> ( R i^i B ) C_ ( D i^i B ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( R i^i B ) C_ ( D i^i B ) ) | 
						
							| 8 | 7 | imim1i |  |-  ( ( ( R i^i B ) C_ ( D i^i B ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) | 
						
							| 9 |  | simpllr |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> B MH* A ) | 
						
							| 10 | 3 5 | chub2i |  |-  C C_ ( R vH C ) | 
						
							| 11 |  | sstr |  |-  ( ( A C_ C /\ C C_ ( R vH C ) ) -> A C_ ( R vH C ) ) | 
						
							| 12 | 10 11 | mpan2 |  |-  ( A C_ C -> A C_ ( R vH C ) ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ ( R vH C ) ) | 
						
							| 14 | 13 | ad2antlr |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R vH C ) ) | 
						
							| 15 |  | simplr |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ D ) | 
						
							| 16 | 15 | ad2antlr |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ D ) | 
						
							| 17 | 14 16 | ssind |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( ( R vH C ) i^i D ) ) | 
						
							| 18 |  | ssin |  |-  ( ( A C_ C /\ A C_ D ) <-> A C_ ( C i^i D ) ) | 
						
							| 19 | 3 4 | chincli |  |-  ( C i^i D ) e. CH | 
						
							| 20 | 19 5 | chub2i |  |-  ( C i^i D ) C_ ( R vH ( C i^i D ) ) | 
						
							| 21 |  | sstr |  |-  ( ( A C_ ( C i^i D ) /\ ( C i^i D ) C_ ( R vH ( C i^i D ) ) ) -> A C_ ( R vH ( C i^i D ) ) ) | 
						
							| 22 | 20 21 | mpan2 |  |-  ( A C_ ( C i^i D ) -> A C_ ( R vH ( C i^i D ) ) ) | 
						
							| 23 | 18 22 | sylbi |  |-  ( ( A C_ C /\ A C_ D ) -> A C_ ( R vH ( C i^i D ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> A C_ ( R vH ( C i^i D ) ) ) | 
						
							| 25 | 24 | ad2antlr |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R vH ( C i^i D ) ) ) | 
						
							| 26 | 17 25 | ssind |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( ( ( R vH C ) i^i D ) i^i ( R vH ( C i^i D ) ) ) ) | 
						
							| 27 |  | inss2 |  |-  ( ( R vH C ) i^i D ) C_ D | 
						
							| 28 |  | sstr |  |-  ( ( ( ( R vH C ) i^i D ) C_ D /\ D C_ ( A vH B ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) | 
						
							| 29 | 27 28 | mpan |  |-  ( D C_ ( A vH B ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) | 
						
							| 30 | 29 | ad2antll |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) | 
						
							| 31 | 30 | ad2antlr |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH C ) i^i D ) C_ ( A vH B ) ) | 
						
							| 32 |  | sstr |  |-  ( ( R C_ D /\ D C_ ( A vH B ) ) -> R C_ ( A vH B ) ) | 
						
							| 33 | 32 | ancoms |  |-  ( ( D C_ ( A vH B ) /\ R C_ D ) -> R C_ ( A vH B ) ) | 
						
							| 34 | 33 | ad2ant2l |  |-  ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) | 
						
							| 35 | 34 | adantll |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) | 
						
							| 36 | 35 | adantll |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> R C_ ( A vH B ) ) | 
						
							| 37 |  | ssinss1 |  |-  ( C C_ ( A vH B ) -> ( C i^i D ) C_ ( A vH B ) ) | 
						
							| 38 | 37 | ad2antrl |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) -> ( C i^i D ) C_ ( A vH B ) ) | 
						
							| 39 | 38 | ad2antlr |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( C i^i D ) C_ ( A vH B ) ) | 
						
							| 40 | 36 39 | jca |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) | 
						
							| 41 | 1 2 | chjcli |  |-  ( A vH B ) e. CH | 
						
							| 42 | 5 19 41 | chlubi |  |-  ( ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) <-> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) | 
						
							| 43 | 40 42 | sylib |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) | 
						
							| 44 | 31 43 | jca |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( A vH B ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) | 
						
							| 45 | 5 3 | chjcli |  |-  ( R vH C ) e. CH | 
						
							| 46 | 45 4 | chincli |  |-  ( ( R vH C ) i^i D ) e. CH | 
						
							| 47 | 5 19 | chjcli |  |-  ( R vH ( C i^i D ) ) e. CH | 
						
							| 48 | 46 47 41 | chlubi |  |-  ( ( ( ( R vH C ) i^i D ) C_ ( A vH B ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) <-> ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) | 
						
							| 49 | 44 48 | sylib |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) | 
						
							| 50 | 1 2 46 47 | mdslle1i |  |-  ( ( B MH* A /\ A C_ ( ( ( R vH C ) i^i D ) i^i ( R vH ( C i^i D ) ) ) /\ ( ( ( R vH C ) i^i D ) vH ( R vH ( C i^i D ) ) ) C_ ( A vH B ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) | 
						
							| 51 | 9 26 49 50 | syl3anc |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) | 
						
							| 52 |  | inindir |  |-  ( ( ( R vH C ) i^i D ) i^i B ) = ( ( ( R vH C ) i^i B ) i^i ( D i^i B ) ) | 
						
							| 53 |  | sstr |  |-  ( ( A C_ ( C i^i D ) /\ ( C i^i D ) C_ R ) -> A C_ R ) | 
						
							| 54 | 18 53 | sylanb |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ R ) | 
						
							| 55 | 54 | ad2ant2r |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ R ) | 
						
							| 56 |  | simplll |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ C ) | 
						
							| 57 | 55 56 | ssind |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> A C_ ( R i^i C ) ) | 
						
							| 58 |  | simplrl |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> C C_ ( A vH B ) ) | 
						
							| 59 | 35 58 | jca |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R C_ ( A vH B ) /\ C C_ ( A vH B ) ) ) | 
						
							| 60 | 5 3 41 | chlubi |  |-  ( ( R C_ ( A vH B ) /\ C C_ ( A vH B ) ) <-> ( R vH C ) C_ ( A vH B ) ) | 
						
							| 61 | 59 60 | sylib |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( R vH C ) C_ ( A vH B ) ) | 
						
							| 62 | 57 61 | jca |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( A C_ ( R i^i C ) /\ ( R vH C ) C_ ( A vH B ) ) ) | 
						
							| 63 | 1 2 5 3 | mdslj1i |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( R i^i C ) /\ ( R vH C ) C_ ( A vH B ) ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) | 
						
							| 64 | 62 63 | sylan2 |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) | 
						
							| 65 | 64 | anassrs |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH C ) i^i B ) = ( ( R i^i B ) vH ( C i^i B ) ) ) | 
						
							| 66 | 65 | ineq1d |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i B ) i^i ( D i^i B ) ) = ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) ) | 
						
							| 67 | 52 66 | eqtr2id |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) = ( ( ( R vH C ) i^i D ) i^i B ) ) | 
						
							| 68 | 18 | biimpi |  |-  ( ( A C_ C /\ A C_ D ) -> A C_ ( C i^i D ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ ( C i^i D ) ) | 
						
							| 70 | 54 69 | ssind |  |-  ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) -> A C_ ( R i^i ( C i^i D ) ) ) | 
						
							| 71 | 33 | adantll |  |-  ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> R C_ ( A vH B ) ) | 
						
							| 72 | 37 | ad2antrr |  |-  ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( C i^i D ) C_ ( A vH B ) ) | 
						
							| 73 | 71 72 | jca |  |-  ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( R C_ ( A vH B ) /\ ( C i^i D ) C_ ( A vH B ) ) ) | 
						
							| 74 | 73 42 | sylib |  |-  ( ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) -> ( R vH ( C i^i D ) ) C_ ( A vH B ) ) | 
						
							| 75 | 70 74 | anim12i |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C i^i D ) C_ R ) /\ ( ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) /\ R C_ D ) ) -> ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) | 
						
							| 76 | 75 | an4s |  |-  ( ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) | 
						
							| 77 | 1 2 5 19 | mdslj1i |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( A C_ ( R i^i ( C i^i D ) ) /\ ( R vH ( C i^i D ) ) C_ ( A vH B ) ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) | 
						
							| 78 | 76 77 | sylan2 |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) | 
						
							| 79 | 78 | anassrs |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R vH ( C i^i D ) ) i^i B ) = ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) ) | 
						
							| 80 |  | inindir |  |-  ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) | 
						
							| 81 | 80 | a1i |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( C i^i D ) i^i B ) = ( ( C i^i B ) i^i ( D i^i B ) ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R i^i B ) vH ( ( C i^i D ) i^i B ) ) = ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) | 
						
							| 83 | 79 82 | eqtr2d |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) = ( ( R vH ( C i^i D ) ) i^i B ) ) | 
						
							| 84 | 67 83 | sseq12d |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) <-> ( ( ( R vH C ) i^i D ) i^i B ) C_ ( ( R vH ( C i^i D ) ) i^i B ) ) ) | 
						
							| 85 | 51 84 | bitr4d |  |-  ( ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) /\ ( ( C i^i D ) C_ R /\ R C_ D ) ) -> ( ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) <-> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) ) | 
						
							| 86 | 85 | exbiri |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) | 
						
							| 87 | 86 | a2d |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) | 
						
							| 88 | 8 87 | syl5 |  |-  ( ( ( A MH B /\ B MH* A ) /\ ( ( A C_ C /\ A C_ D ) /\ ( C C_ ( A vH B ) /\ D C_ ( A vH B ) ) ) ) -> ( ( ( R i^i B ) C_ ( D i^i B ) -> ( ( ( R i^i B ) vH ( C i^i B ) ) i^i ( D i^i B ) ) C_ ( ( R i^i B ) vH ( ( C i^i B ) i^i ( D i^i B ) ) ) ) -> ( ( ( C i^i D ) C_ R /\ R C_ D ) -> ( ( R vH C ) i^i D ) C_ ( R vH ( C i^i D ) ) ) ) ) |