Metamath Proof Explorer


Theorem meadjunre

Description: The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadjunre.m φMMeas
meadjunre.x S=domM
meadjunre.a φAS
meadjunre.b φBS
meadjunre.d φAB=
meadjunre.r φMA
meadjunre.f φMB
Assertion meadjunre φMAB=MA+MB

Proof

Step Hyp Ref Expression
1 meadjunre.m φMMeas
2 meadjunre.x S=domM
3 meadjunre.a φAS
4 meadjunre.b φBS
5 meadjunre.d φAB=
6 meadjunre.r φMA
7 meadjunre.f φMB
8 1 2 3 4 5 meadjun φMAB=MA+𝑒MB
9 6 7 rexaddd φMA+𝑒MB=MA+MB
10 8 9 eqtrd φMAB=MA+MB