Metamath Proof Explorer


Theorem meaiuninc

Description: Measures are continuous from below (bounded case): if E is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meaiuninc.m φMMeas
meaiuninc.n φN
meaiuninc.z Z=N
meaiuninc.e φE:ZdomM
meaiuninc.i φnZEnEn+1
meaiuninc.x φxnZMEnx
meaiuninc.s S=nZMEn
Assertion meaiuninc φSMnZEn

Proof

Step Hyp Ref Expression
1 meaiuninc.m φMMeas
2 meaiuninc.n φN
3 meaiuninc.z Z=N
4 meaiuninc.e φE:ZdomM
5 meaiuninc.i φnZEnEn+1
6 meaiuninc.x φxnZMEnx
7 meaiuninc.s S=nZMEn
8 2fveq3 n=mMEn=MEm
9 8 cbvmptv nZMEn=mZMEm
10 7 9 eqtri S=mZMEm
11 10 a1i φS=mZMEm
12 10 7 eqtr3i mZMEm=nZMEn
13 fveq2 k=iEk=Ei
14 13 cbviunv kN..^mEk=iN..^mEi
15 14 difeq2i EmkN..^mEk=EmiN..^mEi
16 15 mpteq2i mZEmkN..^mEk=mZEmiN..^mEi
17 fveq2 m=nEm=En
18 oveq2 m=nN..^m=N..^n
19 18 iuneq1d m=niN..^mEi=iN..^nEi
20 17 19 difeq12d m=nEmiN..^mEi=EniN..^nEi
21 20 cbvmptv mZEmiN..^mEi=nZEniN..^nEi
22 16 21 eqtri mZEmkN..^mEk=nZEniN..^nEi
23 1 2 3 4 5 6 12 22 meaiuninclem φmZMEmMnZEn
24 11 23 eqbrtrd φSMnZEn