Metamath Proof Explorer


Theorem measvunilem

Description: Lemma for measvuni . (Contributed by Thierry Arnoux, 7-Feb-2017) (Revised by Thierry Arnoux, 19-Feb-2017) (Revised by Thierry Arnoux, 6-Mar-2017)

Ref Expression
Hypothesis measvunilem.1 _xA
Assertion measvunilem MmeasuresSxABSAωDisjxABMxAB=*xAMB

Proof

Step Hyp Ref Expression
1 measvunilem.1 _xA
2 simp1 MmeasuresSxABSAωDisjxABMmeasuresS
3 simp3l MmeasuresSxABSAωDisjxABAω
4 1 abrexctf Aωy|xAy=Bω
5 3 4 syl MmeasuresSxABSAωDisjxABy|xAy=Bω
6 ctex y|xAy=Bωy|xAy=BV
7 5 6 syl MmeasuresSxABSAωDisjxABy|xAy=BV
8 simp2 MmeasuresSxABSAωDisjxABxABS
9 eldifi BSBS
10 9 ralimi xABSxABS
11 nfcv _xS
12 11 abrexss xABSy|xAy=BS
13 10 12 syl xABSy|xAy=BS
14 8 13 syl MmeasuresSxABSAωDisjxABy|xAy=BS
15 elpwg y|xAy=BVy|xAy=B𝒫Sy|xAy=BS
16 15 biimpar y|xAy=BVy|xAy=BSy|xAy=B𝒫S
17 7 14 16 syl2anc MmeasuresSxABSAωDisjxABy|xAy=B𝒫S
18 simp3r MmeasuresSxABSAωDisjxABDisjxAB
19 1 disjabrexf DisjxABDisjzy|xAy=Bz
20 18 19 syl MmeasuresSxABSAωDisjxABDisjzy|xAy=Bz
21 measvun MmeasuresSy|xAy=B𝒫Sy|xAy=BωDisjzy|xAy=BzMy|xAy=B=*zy|xAy=BMz
22 2 17 5 20 21 syl112anc MmeasuresSxABSAωDisjxABMy|xAy=B=*zy|xAy=BMz
23 dfiun2g xABSxAB=y|xAy=B
24 23 fveq2d xABSMxAB=My|xAy=B
25 8 24 syl MmeasuresSxABSAωDisjxABMxAB=My|xAy=B
26 nfcv _xMz
27 nfv xMmeasuresS
28 nfra1 xxABS
29 nfcv _x
30 nfcv _xω
31 1 29 30 nfbr xAω
32 nfdisj1 xDisjxAB
33 31 32 nfan xAωDisjxAB
34 27 28 33 nf3an xMmeasuresSxABSAωDisjxAB
35 fveq2 z=BMz=MB
36 ctex AωAV
37 3 36 syl MmeasuresSxABSAωDisjxABAV
38 8 r19.21bi MmeasuresSxABSAωDisjxABxABS
39 34 1 38 18 disjdsct MmeasuresSxABSAωDisjxABFunxAB-1
40 simpl1 MmeasuresSxABSAωDisjxABxAMmeasuresS
41 measvxrge0 MmeasuresSBSMB0+∞
42 9 41 sylan2 MmeasuresSBSMB0+∞
43 40 38 42 syl2anc MmeasuresSxABSAωDisjxABxAMB0+∞
44 26 34 1 35 37 39 43 38 esumc MmeasuresSxABSAωDisjxAB*xAMB=*zy|xAy=BMz
45 22 25 44 3eqtr4d MmeasuresSxABSAωDisjxABMxAB=*xAMB