Metamath Proof Explorer


Theorem measvunilem

Description: Lemma for measvuni . (Contributed by Thierry Arnoux, 7-Feb-2017) (Revised by Thierry Arnoux, 19-Feb-2017) (Revised by Thierry Arnoux, 6-Mar-2017)

Ref Expression
Hypothesis measvunilem.1 _ x A
Assertion measvunilem M measures S x A B S A ω Disj x A B M x A B = * x A M B

Proof

Step Hyp Ref Expression
1 measvunilem.1 _ x A
2 simp1 M measures S x A B S A ω Disj x A B M measures S
3 simp3l M measures S x A B S A ω Disj x A B A ω
4 1 abrexctf A ω y | x A y = B ω
5 3 4 syl M measures S x A B S A ω Disj x A B y | x A y = B ω
6 ctex y | x A y = B ω y | x A y = B V
7 5 6 syl M measures S x A B S A ω Disj x A B y | x A y = B V
8 simp2 M measures S x A B S A ω Disj x A B x A B S
9 eldifi B S B S
10 9 ralimi x A B S x A B S
11 nfcv _ x S
12 11 abrexss x A B S y | x A y = B S
13 10 12 syl x A B S y | x A y = B S
14 8 13 syl M measures S x A B S A ω Disj x A B y | x A y = B S
15 elpwg y | x A y = B V y | x A y = B 𝒫 S y | x A y = B S
16 15 biimpar y | x A y = B V y | x A y = B S y | x A y = B 𝒫 S
17 7 14 16 syl2anc M measures S x A B S A ω Disj x A B y | x A y = B 𝒫 S
18 simp3r M measures S x A B S A ω Disj x A B Disj x A B
19 1 disjabrexf Disj x A B Disj z y | x A y = B z
20 18 19 syl M measures S x A B S A ω Disj x A B Disj z y | x A y = B z
21 measvun M measures S y | x A y = B 𝒫 S y | x A y = B ω Disj z y | x A y = B z M y | x A y = B = * z y | x A y = B M z
22 2 17 5 20 21 syl112anc M measures S x A B S A ω Disj x A B M y | x A y = B = * z y | x A y = B M z
23 dfiun2g x A B S x A B = y | x A y = B
24 23 fveq2d x A B S M x A B = M y | x A y = B
25 8 24 syl M measures S x A B S A ω Disj x A B M x A B = M y | x A y = B
26 nfcv _ x M z
27 nfv x M measures S
28 nfra1 x x A B S
29 nfcv _ x
30 nfcv _ x ω
31 1 29 30 nfbr x A ω
32 nfdisj1 x Disj x A B
33 31 32 nfan x A ω Disj x A B
34 27 28 33 nf3an x M measures S x A B S A ω Disj x A B
35 fveq2 z = B M z = M B
36 ctex A ω A V
37 3 36 syl M measures S x A B S A ω Disj x A B A V
38 8 r19.21bi M measures S x A B S A ω Disj x A B x A B S
39 34 1 38 18 disjdsct M measures S x A B S A ω Disj x A B Fun x A B -1
40 simpl1 M measures S x A B S A ω Disj x A B x A M measures S
41 measvxrge0 M measures S B S M B 0 +∞
42 9 41 sylan2 M measures S B S M B 0 +∞
43 40 38 42 syl2anc M measures S x A B S A ω Disj x A B x A M B 0 +∞
44 26 34 1 35 37 39 43 38 esumc M measures S x A B S A ω Disj x A B * x A M B = * z y | x A y = B M z
45 22 25 44 3eqtr4d M measures S x A B S A ω Disj x A B M x A B = * x A M B