Metamath Proof Explorer


Theorem meetat

Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012)

Ref Expression
Hypotheses m.b B=BaseK
m.m ˙=meetK
m.z 0˙=0.K
m.a A=AtomsK
Assertion meetat KOLXBPAX˙P=PX˙P=0˙

Proof

Step Hyp Ref Expression
1 m.b B=BaseK
2 m.m ˙=meetK
3 m.z 0˙=0.K
4 m.a A=AtomsK
5 ollat KOLKLat
6 5 3ad2ant1 KOLXBPAKLat
7 simp2 KOLXBPAXB
8 simp3 KOLXBPAPA
9 1 4 atbase PAPB
10 8 9 syl KOLXBPAPB
11 eqid K=K
12 1 11 2 latmle2 KLatXBPBX˙PKP
13 6 7 10 12 syl3anc KOLXBPAX˙PKP
14 olop KOLKOP
15 14 3ad2ant1 KOLXBPAKOP
16 1 2 latmcl KLatXBPBX˙PB
17 6 7 10 16 syl3anc KOLXBPAX˙PB
18 1 11 3 4 leatb KOPX˙PBPAX˙PKPX˙P=PX˙P=0˙
19 15 17 8 18 syl3anc KOLXBPAX˙PKPX˙P=PX˙P=0˙
20 13 19 mpbid KOLXBPAX˙P=PX˙P=0˙