Metamath Proof Explorer


Theorem meetdmss

Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018)

Ref Expression
Hypotheses meetdmss.b B=BaseK
meetdmss.j ˙=meetK
meetdmss.k φKV
Assertion meetdmss φdom˙B×B

Proof

Step Hyp Ref Expression
1 meetdmss.b B=BaseK
2 meetdmss.j ˙=meetK
3 meetdmss.k φKV
4 relopabv Relxy|xydomglbK
5 eqid glbK=glbK
6 5 2 meetdm KVdom˙=xy|xydomglbK
7 3 6 syl φdom˙=xy|xydomglbK
8 7 releqd φReldom˙Relxy|xydomglbK
9 4 8 mpbiri φReldom˙
10 vex xV
11 10 a1i φxV
12 vex yV
13 12 a1i φyV
14 5 2 3 11 13 meetdef φxydom˙xydomglbK
15 eqid K=K
16 3 adantr φxydomglbKKV
17 simpr φxydomglbKxydomglbK
18 1 15 5 16 17 glbelss φxydomglbKxyB
19 18 ex φxydomglbKxyB
20 10 12 prss xByBxyB
21 opelxpi xByBxyB×B
22 20 21 sylbir xyBxyB×B
23 19 22 syl6 φxydomglbKxyB×B
24 14 23 sylbid φxydom˙xyB×B
25 9 24 relssdv φdom˙B×B