Metamath Proof Explorer


Theorem mendmulr

Description: A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendmulrfval.a A=MEndoM
mendmulrfval.b B=BaseA
mendmulr.q ·˙=A
Assertion mendmulr XBYBX·˙Y=XY

Proof

Step Hyp Ref Expression
1 mendmulrfval.a A=MEndoM
2 mendmulrfval.b B=BaseA
3 mendmulr.q ·˙=A
4 coexg XBYBXYV
5 coeq1 x=Xxy=Xy
6 coeq2 y=YXy=XY
7 1 2 mendmulrfval A=xB,yBxy
8 3 7 eqtri ·˙=xB,yBxy
9 5 6 8 ovmpog XBYBXYVX·˙Y=XY
10 4 9 mpd3an3 XBYBX·˙Y=XY