Metamath Proof Explorer


Theorem metakunt23

Description: B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt23.1 φ M
metakunt23.2 φ I
metakunt23.3 φ I M
metakunt23.4 B = x 1 M if x = M M if x < I x + M - I x + 1 - I
metakunt23.5 C = x 1 I 1 x + M - I
metakunt23.6 D = x I M 1 x + 1 - I
metakunt23.7 φ X 1 M
Assertion metakunt23 φ B X = C D M M X

Proof

Step Hyp Ref Expression
1 metakunt23.1 φ M
2 metakunt23.2 φ I
3 metakunt23.3 φ I M
4 metakunt23.4 B = x 1 M if x = M M if x < I x + M - I x + 1 - I
5 metakunt23.5 C = x 1 I 1 x + M - I
6 metakunt23.6 D = x I M 1 x + 1 - I
7 metakunt23.7 φ X 1 M
8 1 adantr φ X = M M
9 2 adantr φ X = M I
10 3 adantr φ X = M I M
11 7 adantr φ X = M X 1 M
12 simpr φ X = M X = M
13 8 9 10 4 5 6 11 12 metakunt20 φ X = M B X = C D M M X
14 1 ad2antrr φ ¬ X = M X < I M
15 2 ad2antrr φ ¬ X = M X < I I
16 3 ad2antrr φ ¬ X = M X < I I M
17 7 ad2antrr φ ¬ X = M X < I X 1 M
18 simplr φ ¬ X = M X < I ¬ X = M
19 simpr φ ¬ X = M X < I X < I
20 14 15 16 4 5 6 17 18 19 metakunt21 φ ¬ X = M X < I B X = C D M M X
21 1 ad2antrr φ ¬ X = M ¬ X < I M
22 2 ad2antrr φ ¬ X = M ¬ X < I I
23 3 ad2antrr φ ¬ X = M ¬ X < I I M
24 7 ad2antrr φ ¬ X = M ¬ X < I X 1 M
25 simplr φ ¬ X = M ¬ X < I ¬ X = M
26 simpr φ ¬ X = M ¬ X < I ¬ X < I
27 21 22 23 4 5 6 24 25 26 metakunt22 φ ¬ X = M ¬ X < I B X = C D M M X
28 20 27 pm2.61dan φ ¬ X = M B X = C D M M X
29 13 28 pm2.61dan φ B X = C D M M X