Metamath Proof Explorer


Theorem metakunt9

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt9.1 φM
metakunt9.2 φI
metakunt9.3 φIM
metakunt9.4 A=x1Mifx=IMifx<Ixx1
metakunt9.5 C=y1Mify=MIify<Iyy+1
metakunt9.6 φX1M
Assertion metakunt9 φCAX=X

Proof

Step Hyp Ref Expression
1 metakunt9.1 φM
2 metakunt9.2 φI
3 metakunt9.3 φIM
4 metakunt9.4 A=x1Mifx=IMifx<Ixx1
5 metakunt9.5 C=y1Mify=MIify<Iyy+1
6 metakunt9.6 φX1M
7 1 2 3 4 5 6 metakunt8 φI<XCAX=X
8 elfznn X1MX
9 6 8 syl φX
10 9 nnred φX
11 2 nnred φI
12 10 11 leloed φXIX<IX=I
13 1 2 3 4 5 6 metakunt6 φX<ICAX=X
14 1 2 3 4 5 6 metakunt5 φX=ICAX=X
15 13 14 jaodan φX<IX=ICAX=X
16 15 ex φX<IX=ICAX=X
17 12 16 sylbid φXICAX=X
18 17 imp φXICAX=X
19 7 18 11 10 ltlecasei φCAX=X