Metamath Proof Explorer


Theorem metakunt9

Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024)

Ref Expression
Hypotheses metakunt9.1 φ M
metakunt9.2 φ I
metakunt9.3 φ I M
metakunt9.4 A = x 1 M if x = I M if x < I x x 1
metakunt9.5 C = y 1 M if y = M I if y < I y y + 1
metakunt9.6 φ X 1 M
Assertion metakunt9 φ C A X = X

Proof

Step Hyp Ref Expression
1 metakunt9.1 φ M
2 metakunt9.2 φ I
3 metakunt9.3 φ I M
4 metakunt9.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt9.5 C = y 1 M if y = M I if y < I y y + 1
6 metakunt9.6 φ X 1 M
7 1 2 3 4 5 6 metakunt8 φ I < X C A X = X
8 elfznn X 1 M X
9 6 8 syl φ X
10 9 nnred φ X
11 2 nnred φ I
12 10 11 leloed φ X I X < I X = I
13 1 2 3 4 5 6 metakunt6 φ X < I C A X = X
14 1 2 3 4 5 6 metakunt5 φ X = I C A X = X
15 13 14 jaodan φ X < I X = I C A X = X
16 15 ex φ X < I X = I C A X = X
17 12 16 sylbid φ X I C A X = X
18 17 imp φ X I C A X = X
19 7 18 11 10 ltlecasei φ C A X = X