Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metequiv.3 | |
|
metequiv.4 | |
||
Assertion | metequiv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metequiv.3 | |
|
2 | metequiv.4 | |
|
3 | simprrr | |
|
4 | simplll | |
|
5 | simplr | |
|
6 | simprlr | |
|
7 | 6 | rpxrd | |
8 | simprll | |
|
9 | 8 | rpxrd | |
10 | simprrl | |
|
11 | ssbl | |
|
12 | 4 5 7 9 10 11 | syl221anc | |
13 | 3 12 | eqsstrrd | |
14 | simpllr | |
|
15 | ssbl | |
|
16 | 14 5 7 9 10 15 | syl221anc | |
17 | 3 16 | eqsstrd | |
18 | 13 17 | jca | |
19 | 18 | expr | |
20 | 19 | anassrs | |
21 | 20 | reximdva | |
22 | r19.40 | |
|
23 | 21 22 | syl6 | |
24 | 23 | ralimdva | |
25 | r19.26 | |
|
26 | 24 25 | imbitrdi | |
27 | 26 | ralimdva | |
28 | 1 2 | metequiv | |
29 | 27 28 | sylibrd | |