Metamath Proof Explorer


Theorem metequiv2

Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses metequiv.3 J=MetOpenC
metequiv.4 K=MetOpenD
Assertion metequiv2 C∞MetXD∞MetXxXr+s+srxballCs=xballDsJ=K

Proof

Step Hyp Ref Expression
1 metequiv.3 J=MetOpenC
2 metequiv.4 K=MetOpenD
3 simprrr C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballCs=xballDs
4 simplll C∞MetXD∞MetXxXr+s+srxballCs=xballDsC∞MetX
5 simplr C∞MetXD∞MetXxXr+s+srxballCs=xballDsxX
6 simprlr C∞MetXD∞MetXxXr+s+srxballCs=xballDss+
7 6 rpxrd C∞MetXD∞MetXxXr+s+srxballCs=xballDss*
8 simprll C∞MetXD∞MetXxXr+s+srxballCs=xballDsr+
9 8 rpxrd C∞MetXD∞MetXxXr+s+srxballCs=xballDsr*
10 simprrl C∞MetXD∞MetXxXr+s+srxballCs=xballDssr
11 ssbl C∞MetXxXs*r*srxballCsxballCr
12 4 5 7 9 10 11 syl221anc C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballCsxballCr
13 3 12 eqsstrrd C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballDsxballCr
14 simpllr C∞MetXD∞MetXxXr+s+srxballCs=xballDsD∞MetX
15 ssbl D∞MetXxXs*r*srxballDsxballDr
16 14 5 7 9 10 15 syl221anc C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballDsxballDr
17 3 16 eqsstrd C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballCsxballDr
18 13 17 jca C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballDsxballCrxballCsxballDr
19 18 expr C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballDsxballCrxballCsxballDr
20 19 anassrs C∞MetXD∞MetXxXr+s+srxballCs=xballDsxballDsxballCrxballCsxballDr
21 20 reximdva C∞MetXD∞MetXxXr+s+srxballCs=xballDss+xballDsxballCrxballCsxballDr
22 r19.40 s+xballDsxballCrxballCsxballDrs+xballDsxballCrs+xballCsxballDr
23 21 22 syl6 C∞MetXD∞MetXxXr+s+srxballCs=xballDss+xballDsxballCrs+xballCsxballDr
24 23 ralimdva C∞MetXD∞MetXxXr+s+srxballCs=xballDsr+s+xballDsxballCrs+xballCsxballDr
25 r19.26 r+s+xballDsxballCrs+xballCsxballDrr+s+xballDsxballCrr+s+xballCsxballDr
26 24 25 imbitrdi C∞MetXD∞MetXxXr+s+srxballCs=xballDsr+s+xballDsxballCrr+s+xballCsxballDr
27 26 ralimdva C∞MetXD∞MetXxXr+s+srxballCs=xballDsxXr+s+xballDsxballCrr+s+xballCsxballDr
28 1 2 metequiv C∞MetXD∞MetXJ=KxXr+s+xballDsxballCrr+s+xballCsxballDr
29 27 28 sylibrd C∞MetXD∞MetXxXr+s+srxballCs=xballDsJ=K