Metamath Proof Explorer


Theorem ssbl

Description: The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ssbl D∞MetXPXR*S*RSPballDRPballDS

Proof

Step Hyp Ref Expression
1 simp1l D∞MetXPXR*S*RSD∞MetX
2 simp1r D∞MetXPXR*S*RSPX
3 simp2l D∞MetXPXR*S*RSR*
4 simp2r D∞MetXPXR*S*RSS*
5 xmet0 D∞MetXPXPDP=0
6 5 3ad2ant1 D∞MetXPXR*S*RSPDP=0
7 0re 0
8 6 7 eqeltrdi D∞MetXPXR*S*RSPDP
9 simp3 D∞MetXPXR*S*RSRS
10 xsubge0 S*R*0S+𝑒RRS
11 4 3 10 syl2anc D∞MetXPXR*S*RS0S+𝑒RRS
12 9 11 mpbird D∞MetXPXR*S*RS0S+𝑒R
13 6 12 eqbrtrd D∞MetXPXR*S*RSPDPS+𝑒R
14 1 2 2 3 4 8 13 xblss2 D∞MetXPXR*S*RSPballDRPballDS