Metamath Proof Explorer


Theorem blssps

Description: Any point P in a ball B can be centered in another ball that is a subset of B . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion blssps DPsMetXBranballDPBx+PballDxB

Proof

Step Hyp Ref Expression
1 blrnps DPsMetXBranballDyXr*B=yballDr
2 elblps DPsMetXyXr*PyballDrPXyDP<r
3 simpl1 DPsMetXyXr*PXDPsMetX
4 simpl2 DPsMetXyXr*PXyX
5 simpr DPsMetXyXr*PXPX
6 psmetcl DPsMetXyXPXyDP*
7 3 4 5 6 syl3anc DPsMetXyXr*PXyDP*
8 simpl3 DPsMetXyXr*PXr*
9 qbtwnxr yDP*r*yDP<rzyDP<zz<r
10 9 3expia yDP*r*yDP<rzyDP<zz<r
11 7 8 10 syl2anc DPsMetXyXr*PXyDP<rzyDP<zz<r
12 qre zz
13 simpll1 DPsMetXyXr*PXzyDP<zz<rDPsMetX
14 simplr DPsMetXyXr*PXzyDP<zz<rPX
15 simpll2 DPsMetXyXr*PXzyDP<zz<ryX
16 psmetsym DPsMetXPXyXPDy=yDP
17 13 14 15 16 syl3anc DPsMetXyXr*PXzyDP<zz<rPDy=yDP
18 simprrl DPsMetXyXr*PXzyDP<zz<ryDP<z
19 17 18 eqbrtrd DPsMetXyXr*PXzyDP<zz<rPDy<z
20 simprl DPsMetXyXr*PXzyDP<zz<rz
21 psmetcl DPsMetXPXyXPDy*
22 13 14 15 21 syl3anc DPsMetXyXr*PXzyDP<zz<rPDy*
23 rexr zz*
24 23 ad2antrl DPsMetXyXr*PXzyDP<zz<rz*
25 22 24 19 xrltled DPsMetXyXr*PXzyDP<zz<rPDyz
26 psmetlecl DPsMetXPXyXzPDyzPDy
27 13 14 15 20 25 26 syl122anc DPsMetXyXr*PXzyDP<zz<rPDy
28 difrp PDyzPDy<zzPDy+
29 27 20 28 syl2anc DPsMetXyXr*PXzyDP<zz<rPDy<zzPDy+
30 19 29 mpbid DPsMetXyXr*PXzyDP<zz<rzPDy+
31 20 27 resubcld DPsMetXyXr*PXzyDP<zz<rzPDy
32 22 xrleidd DPsMetXyXr*PXzyDP<zz<rPDyPDy
33 20 recnd DPsMetXyXr*PXzyDP<zz<rz
34 27 recnd DPsMetXyXr*PXzyDP<zz<rPDy
35 33 34 nncand DPsMetXyXr*PXzyDP<zz<rzzPDy=PDy
36 32 35 breqtrrd DPsMetXyXr*PXzyDP<zz<rPDyzzPDy
37 blss2ps DPsMetXPXyXzPDyzPDyzzPDyPballDzPDyyballDz
38 13 14 15 31 20 36 37 syl33anc DPsMetXyXr*PXzyDP<zz<rPballDzPDyyballDz
39 simpll3 DPsMetXyXr*PXzyDP<zz<rr*
40 simprrr DPsMetXyXr*PXzyDP<zz<rz<r
41 24 39 40 xrltled DPsMetXyXr*PXzyDP<zz<rzr
42 ssblps DPsMetXyXz*r*zryballDzyballDr
43 13 15 24 39 41 42 syl221anc DPsMetXyXr*PXzyDP<zz<ryballDzyballDr
44 38 43 sstrd DPsMetXyXr*PXzyDP<zz<rPballDzPDyyballDr
45 oveq2 x=zPDyPballDx=PballDzPDy
46 45 sseq1d x=zPDyPballDxyballDrPballDzPDyyballDr
47 46 rspcev zPDy+PballDzPDyyballDrx+PballDxyballDr
48 30 44 47 syl2anc DPsMetXyXr*PXzyDP<zz<rx+PballDxyballDr
49 48 expr DPsMetXyXr*PXzyDP<zz<rx+PballDxyballDr
50 12 49 sylan2 DPsMetXyXr*PXzyDP<zz<rx+PballDxyballDr
51 50 rexlimdva DPsMetXyXr*PXzyDP<zz<rx+PballDxyballDr
52 11 51 syld DPsMetXyXr*PXyDP<rx+PballDxyballDr
53 52 expimpd DPsMetXyXr*PXyDP<rx+PballDxyballDr
54 2 53 sylbid DPsMetXyXr*PyballDrx+PballDxyballDr
55 eleq2 B=yballDrPBPyballDr
56 sseq2 B=yballDrPballDxBPballDxyballDr
57 56 rexbidv B=yballDrx+PballDxBx+PballDxyballDr
58 55 57 imbi12d B=yballDrPBx+PballDxBPyballDrx+PballDxyballDr
59 54 58 syl5ibrcom DPsMetXyXr*B=yballDrPBx+PballDxB
60 59 3expib DPsMetXyXr*B=yballDrPBx+PballDxB
61 60 rexlimdvv DPsMetXyXr*B=yballDrPBx+PballDxB
62 1 61 sylbid DPsMetXBranballDPBx+PballDxB
63 62 3imp DPsMetXBranballDPBx+PballDxB