| Step |
Hyp |
Ref |
Expression |
| 1 |
|
blrnps |
|
| 2 |
|
elblps |
|
| 3 |
|
simpl1 |
|
| 4 |
|
simpl2 |
|
| 5 |
|
simpr |
|
| 6 |
|
psmetcl |
|
| 7 |
3 4 5 6
|
syl3anc |
|
| 8 |
|
simpl3 |
|
| 9 |
|
qbtwnxr |
|
| 10 |
9
|
3expia |
|
| 11 |
7 8 10
|
syl2anc |
|
| 12 |
|
qre |
|
| 13 |
|
simpll1 |
|
| 14 |
|
simplr |
|
| 15 |
|
simpll2 |
|
| 16 |
|
psmetsym |
|
| 17 |
13 14 15 16
|
syl3anc |
|
| 18 |
|
simprrl |
|
| 19 |
17 18
|
eqbrtrd |
|
| 20 |
|
simprl |
|
| 21 |
|
psmetcl |
|
| 22 |
13 14 15 21
|
syl3anc |
|
| 23 |
|
rexr |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
22 24 19
|
xrltled |
|
| 26 |
|
psmetlecl |
|
| 27 |
13 14 15 20 25 26
|
syl122anc |
|
| 28 |
|
difrp |
|
| 29 |
27 20 28
|
syl2anc |
|
| 30 |
19 29
|
mpbid |
|
| 31 |
20 27
|
resubcld |
|
| 32 |
22
|
xrleidd |
|
| 33 |
20
|
recnd |
|
| 34 |
27
|
recnd |
|
| 35 |
33 34
|
nncand |
|
| 36 |
32 35
|
breqtrrd |
|
| 37 |
|
blss2ps |
|
| 38 |
13 14 15 31 20 36 37
|
syl33anc |
|
| 39 |
|
simpll3 |
|
| 40 |
|
simprrr |
|
| 41 |
24 39 40
|
xrltled |
|
| 42 |
|
ssblps |
|
| 43 |
13 15 24 39 41 42
|
syl221anc |
|
| 44 |
38 43
|
sstrd |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
sseq1d |
|
| 47 |
46
|
rspcev |
|
| 48 |
30 44 47
|
syl2anc |
|
| 49 |
48
|
expr |
|
| 50 |
12 49
|
sylan2 |
|
| 51 |
50
|
rexlimdva |
|
| 52 |
11 51
|
syld |
|
| 53 |
52
|
expimpd |
|
| 54 |
2 53
|
sylbid |
|
| 55 |
|
eleq2 |
|
| 56 |
|
sseq2 |
|
| 57 |
56
|
rexbidv |
|
| 58 |
55 57
|
imbi12d |
|
| 59 |
54 58
|
syl5ibrcom |
|
| 60 |
59
|
3expib |
|
| 61 |
60
|
rexlimdvv |
|
| 62 |
1 61
|
sylbid |
|
| 63 |
62
|
3imp |
|