Metamath Proof Explorer


Theorem qbtwnxr

Description: The rational numbers are dense in RR* : any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion qbtwnxr A*B*A<BxA<xx<B

Proof

Step Hyp Ref Expression
1 elxr A*AA=+∞A=−∞
2 elxr B*BB=+∞B=−∞
3 qbtwnre ABA<BxA<xx<B
4 3 3expia ABA<BxA<xx<B
5 simpl AB=+∞A
6 peano2re AA+1
7 6 adantr AB=+∞A+1
8 ltp1 AA<A+1
9 8 adantr AB=+∞A<A+1
10 qbtwnre AA+1A<A+1xA<xx<A+1
11 5 7 9 10 syl3anc AB=+∞xA<xx<A+1
12 qre xx
13 12 ltpnfd xx<+∞
14 13 adantl AB=+∞xx<+∞
15 simplr AB=+∞xB=+∞
16 14 15 breqtrrd AB=+∞xx<B
17 16 a1d AB=+∞xx<A+1x<B
18 17 anim2d AB=+∞xA<xx<A+1A<xx<B
19 18 reximdva AB=+∞xA<xx<A+1xA<xx<B
20 11 19 mpd AB=+∞xA<xx<B
21 20 a1d AB=+∞A<BxA<xx<B
22 rexr AA*
23 breq2 B=−∞A<BA<−∞
24 23 adantl A*B=−∞A<BA<−∞
25 nltmnf A*¬A<−∞
26 25 adantr A*B=−∞¬A<−∞
27 26 pm2.21d A*B=−∞A<−∞xA<xx<B
28 24 27 sylbid A*B=−∞A<BxA<xx<B
29 22 28 sylan AB=−∞A<BxA<xx<B
30 4 21 29 3jaodan ABB=+∞B=−∞A<BxA<xx<B
31 2 30 sylan2b AB*A<BxA<xx<B
32 breq1 A=+∞A<B+∞<B
33 32 adantr A=+∞B*A<B+∞<B
34 pnfnlt B*¬+∞<B
35 34 adantl A=+∞B*¬+∞<B
36 35 pm2.21d A=+∞B*+∞<BxA<xx<B
37 33 36 sylbid A=+∞B*A<BxA<xx<B
38 peano2rem BB1
39 38 adantl A=−∞BB1
40 simpr A=−∞BB
41 ltm1 BB1<B
42 41 adantl A=−∞BB1<B
43 qbtwnre B1BB1<BxB1<xx<B
44 39 40 42 43 syl3anc A=−∞BxB1<xx<B
45 simpll A=−∞BxA=−∞
46 12 adantl A=−∞Bxx
47 46 mnfltd A=−∞Bx−∞<x
48 45 47 eqbrtrd A=−∞BxA<x
49 48 a1d A=−∞BxB1<xA<x
50 49 anim1d A=−∞BxB1<xx<BA<xx<B
51 50 reximdva A=−∞BxB1<xx<BxA<xx<B
52 44 51 mpd A=−∞BxA<xx<B
53 52 a1d A=−∞BA<BxA<xx<B
54 1re 1
55 mnflt 1−∞<1
56 54 55 ax-mp −∞<1
57 breq1 A=−∞A<1−∞<1
58 56 57 mpbiri A=−∞A<1
59 ltpnf 11<+∞
60 54 59 ax-mp 1<+∞
61 breq2 B=+∞1<B1<+∞
62 60 61 mpbiri B=+∞1<B
63 1z 1
64 zq 11
65 63 64 ax-mp 1
66 breq2 x=1A<xA<1
67 breq1 x=1x<B1<B
68 66 67 anbi12d x=1A<xx<BA<11<B
69 68 rspcev 1A<11<BxA<xx<B
70 65 69 mpan A<11<BxA<xx<B
71 58 62 70 syl2an A=−∞B=+∞xA<xx<B
72 71 a1d A=−∞B=+∞A<BxA<xx<B
73 3mix3 A=−∞AA=+∞A=−∞
74 73 1 sylibr A=−∞A*
75 74 28 sylan A=−∞B=−∞A<BxA<xx<B
76 53 72 75 3jaodan A=−∞BB=+∞B=−∞A<BxA<xx<B
77 2 76 sylan2b A=−∞B*A<BxA<xx<B
78 31 37 77 3jaoian AA=+∞A=−∞B*A<BxA<xx<B
79 1 78 sylanb A*B*A<BxA<xx<B
80 79 3impia A*B*A<BxA<xx<B