Metamath Proof Explorer


Theorem metres2

Description: Lemma for metres . (Contributed by FL, 12-Oct-2006) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metres2 DMetXRXDR×RMetR

Proof

Step Hyp Ref Expression
1 metxmet DMetXD∞MetX
2 xmetres2 D∞MetXRXDR×R∞MetR
3 1 2 sylan DMetXRXDR×R∞MetR
4 metf DMetXD:X×X
5 4 adantr DMetXRXD:X×X
6 simpr DMetXRXRX
7 xpss12 RXRXR×RX×X
8 6 7 sylancom DMetXRXR×RX×X
9 5 8 fssresd DMetXRXDR×R:R×R
10 ismet2 DR×RMetRDR×R∞MetRDR×R:R×R
11 3 9 10 sylanbrc DMetXRXDR×RMetR