Metamath Proof Explorer


Theorem metuel

Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 8-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion metuel XDPsMetXVmetUnifDVX×Xwrana+D-10awV

Proof

Step Hyp Ref Expression
1 metuval DPsMetXmetUnifD=X×XfilGenrana+D-10a
2 1 adantl XDPsMetXmetUnifD=X×XfilGenrana+D-10a
3 2 eleq2d XDPsMetXVmetUnifDVX×XfilGenrana+D-10a
4 oveq2 a=e0a=0e
5 4 imaeq2d a=eD-10a=D-10e
6 5 cbvmptv a+D-10a=e+D-10e
7 6 rneqi rana+D-10a=rane+D-10e
8 7 metustfbas XDPsMetXrana+D-10afBasX×X
9 elfg rana+D-10afBasX×XVX×XfilGenrana+D-10aVX×Xwrana+D-10awV
10 8 9 syl XDPsMetXVX×XfilGenrana+D-10aVX×Xwrana+D-10awV
11 3 10 bitrd XDPsMetXVmetUnifDVX×Xwrana+D-10awV