Metamath Proof Explorer


Theorem metuel2

Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 24-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metuel2.u U=metUnifD
Assertion metuel2 XDPsMetXVUVX×Xd+xXyXxDy<dxVy

Proof

Step Hyp Ref Expression
1 metuel2.u U=metUnifD
2 1 eleq2i VUVmetUnifD
3 2 a1i XDPsMetXVUVmetUnifD
4 metuel XDPsMetXVmetUnifDVX×Xwrana+D-10awV
5 oveq2 a=d0a=0d
6 5 imaeq2d a=dD-10a=D-10d
7 6 cbvmptv a+D-10a=d+D-10d
8 7 elrnmpt wVwrana+D-10ad+w=D-10d
9 8 elv wrana+D-10ad+w=D-10d
10 9 anbi1i wrana+D-10awVd+w=D-10dwV
11 r19.41v d+w=D-10dwVd+w=D-10dwV
12 10 11 bitr4i wrana+D-10awVd+w=D-10dwV
13 12 exbii wwrana+D-10awVwd+w=D-10dwV
14 df-rex wrana+D-10awVwwrana+D-10awV
15 rexcom4 d+ww=D-10dwVwd+w=D-10dwV
16 13 14 15 3bitr4i wrana+D-10awVd+ww=D-10dwV
17 cnvexg DPsMetXD-1V
18 imaexg D-1VD-10dV
19 sseq1 w=D-10dwVD-10dV
20 19 ceqsexgv D-10dVww=D-10dwVD-10dV
21 17 18 20 3syl DPsMetXww=D-10dwVD-10dV
22 21 rexbidv DPsMetXd+ww=D-10dwVd+D-10dV
23 22 adantr DPsMetXVX×Xd+ww=D-10dwVd+D-10dV
24 16 23 bitrid DPsMetXVX×Xwrana+D-10awVd+D-10dV
25 cnvimass D-10ddomD
26 simpll DPsMetXVX×Xd+DPsMetX
27 psmetf DPsMetXD:X×X*
28 fdm D:X×X*domD=X×X
29 26 27 28 3syl DPsMetXVX×Xd+domD=X×X
30 25 29 sseqtrid DPsMetXVX×Xd+D-10dX×X
31 ssrel2 D-10dX×XD-10dVxXyXxyD-10dxyV
32 30 31 syl DPsMetXVX×Xd+D-10dVxXyXxyD-10dxyV
33 simplr DPsMetXVX×Xd+xXyXxX
34 simpr DPsMetXVX×Xd+xXyXyX
35 33 34 opelxpd DPsMetXVX×Xd+xXyXxyX×X
36 35 biantrurd DPsMetXVX×Xd+xXyXDxy0dxyX×XDxy0d
37 psmetcl DPsMetXxXyXxDy*
38 37 ad5ant145 DPsMetXVX×Xd+xXyXxDy*
39 38 3biant1d DPsMetXVX×Xd+xXyX0xDyxDy<dxDy*0xDyxDy<d
40 psmetge0 DPsMetXxXyX0xDy
41 40 biantrurd DPsMetXxXyXxDy<d0xDyxDy<d
42 41 ad5ant145 DPsMetXVX×Xd+xXyXxDy<d0xDyxDy<d
43 0xr 0*
44 simpllr DPsMetXVX×Xd+xXyXd+
45 44 rpxrd DPsMetXVX×Xd+xXyXd*
46 elico1 0*d*xDy0dxDy*0xDyxDy<d
47 43 45 46 sylancr DPsMetXVX×Xd+xXyXxDy0dxDy*0xDyxDy<d
48 39 42 47 3bitr4d DPsMetXVX×Xd+xXyXxDy<dxDy0d
49 df-ov xDy=Dxy
50 49 eleq1i xDy0dDxy0d
51 48 50 bitrdi DPsMetXVX×Xd+xXyXxDy<dDxy0d
52 simp-4l DPsMetXVX×Xd+xXyXDPsMetX
53 ffn D:X×X*DFnX×X
54 elpreima DFnX×XxyD-10dxyX×XDxy0d
55 52 27 53 54 4syl DPsMetXVX×Xd+xXyXxyD-10dxyX×XDxy0d
56 36 51 55 3bitr4d DPsMetXVX×Xd+xXyXxDy<dxyD-10d
57 56 anasss DPsMetXVX×Xd+xXyXxDy<dxyD-10d
58 df-br xVyxyV
59 58 a1i DPsMetXVX×Xd+xXyXxVyxyV
60 57 59 imbi12d DPsMetXVX×Xd+xXyXxDy<dxVyxyD-10dxyV
61 60 2ralbidva DPsMetXVX×Xd+xXyXxDy<dxVyxXyXxyD-10dxyV
62 32 61 bitr4d DPsMetXVX×Xd+D-10dVxXyXxDy<dxVy
63 62 rexbidva DPsMetXVX×Xd+D-10dVd+xXyXxDy<dxVy
64 24 63 bitrd DPsMetXVX×Xwrana+D-10awVd+xXyXxDy<dxVy
65 64 pm5.32da DPsMetXVX×Xwrana+D-10awVVX×Xd+xXyXxDy<dxVy
66 65 adantl XDPsMetXVX×Xwrana+D-10awVVX×Xd+xXyXxDy<dxVy
67 3 4 66 3bitrd XDPsMetXVUVX×Xd+xXyXxDy<dxVy