Metamath Proof Explorer


Theorem mfsdisj

Description: The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mfsdisj.c C = mCN T
mfsdisj.v V = mVR T
Assertion mfsdisj T mFS C V =

Proof

Step Hyp Ref Expression
1 mfsdisj.c C = mCN T
2 mfsdisj.v V = mVR T
3 eqid mType T = mType T
4 eqid mVT T = mVT T
5 eqid mTC T = mTC T
6 eqid mAx T = mAx T
7 eqid mStat T = mStat T
8 1 2 3 4 5 6 7 ismfs T mFS T mFS C V = mType T : V mTC T mAx T mStat T v mVT T ¬ mType T -1 v Fin
9 8 ibi T mFS C V = mType T : V mTC T mAx T mStat T v mVT T ¬ mType T -1 v Fin
10 9 simplld T mFS C V =