Metamath Proof Explorer


Theorem mgpf

Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015)

Ref Expression
Assertion mgpf mulGrpRing:RingMnd

Proof

Step Hyp Ref Expression
1 fnmgp mulGrpFnV
2 ssv RingV
3 fnssres mulGrpFnVRingVmulGrpRingFnRing
4 1 2 3 mp2an mulGrpRingFnRing
5 fvres aRingmulGrpRinga=mulGrpa
6 eqid mulGrpa=mulGrpa
7 6 ringmgp aRingmulGrpaMnd
8 5 7 eqeltrd aRingmulGrpRingaMnd
9 8 rgen aRingmulGrpRingaMnd
10 ffnfv mulGrpRing:RingMndmulGrpRingFnRingaRingmulGrpRingaMnd
11 4 9 10 mpbir2an mulGrpRing:RingMnd