Metamath Proof Explorer


Theorem mgpressOLD

Description: Obsolete version of mgpress as of 18-Oct-2024. Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mgpress.1 S = R 𝑠 A
mgpress.2 M = mulGrp R
Assertion mgpressOLD R V A W M 𝑠 A = mulGrp S

Proof

Step Hyp Ref Expression
1 mgpress.1 S = R 𝑠 A
2 mgpress.2 M = mulGrp R
3 simpr R V A W Base R A Base R A
4 2 fvexi M V
5 4 a1i R V A W Base R A M V
6 simplr R V A W Base R A A W
7 eqid M 𝑠 A = M 𝑠 A
8 eqid Base R = Base R
9 2 8 mgpbas Base R = Base M
10 7 9 ressid2 Base R A M V A W M 𝑠 A = M
11 3 5 6 10 syl3anc R V A W Base R A M 𝑠 A = M
12 simpll R V A W Base R A R V
13 1 8 ressid2 Base R A R V A W S = R
14 3 12 6 13 syl3anc R V A W Base R A S = R
15 14 fveq2d R V A W Base R A mulGrp S = mulGrp R
16 2 11 15 3eqtr4a R V A W Base R A M 𝑠 A = mulGrp S
17 eqid R = R
18 2 17 mgpval M = R sSet + ndx R
19 18 oveq1i M sSet Base ndx A Base R = R sSet + ndx R sSet Base ndx A Base R
20 simpr R V A W ¬ Base R A ¬ Base R A
21 4 a1i R V A W ¬ Base R A M V
22 simplr R V A W ¬ Base R A A W
23 7 9 ressval2 ¬ Base R A M V A W M 𝑠 A = M sSet Base ndx A Base R
24 20 21 22 23 syl3anc R V A W ¬ Base R A M 𝑠 A = M sSet Base ndx A Base R
25 eqid mulGrp S = mulGrp S
26 eqid S = S
27 25 26 mgpval mulGrp S = S sSet + ndx S
28 simpll R V A W ¬ Base R A R V
29 1 8 ressval2 ¬ Base R A R V A W S = R sSet Base ndx A Base R
30 20 28 22 29 syl3anc R V A W ¬ Base R A S = R sSet Base ndx A Base R
31 1 17 ressmulr A W R = S
32 31 eqcomd A W S = R
33 32 ad2antlr R V A W ¬ Base R A S = R
34 33 opeq2d R V A W ¬ Base R A + ndx S = + ndx R
35 30 34 oveq12d R V A W ¬ Base R A S sSet + ndx S = R sSet Base ndx A Base R sSet + ndx R
36 27 35 eqtrid R V A W ¬ Base R A mulGrp S = R sSet Base ndx A Base R sSet + ndx R
37 1ne2 1 2
38 37 necomi 2 1
39 plusgndx + ndx = 2
40 basendx Base ndx = 1
41 39 40 neeq12i + ndx Base ndx 2 1
42 38 41 mpbir + ndx Base ndx
43 fvex R V
44 fvex Base R V
45 44 inex2 A Base R V
46 fvex + ndx V
47 fvex Base ndx V
48 46 47 setscom R V + ndx Base ndx R V A Base R V R sSet + ndx R sSet Base ndx A Base R = R sSet Base ndx A Base R sSet + ndx R
49 43 45 48 mpanr12 R V + ndx Base ndx R sSet + ndx R sSet Base ndx A Base R = R sSet Base ndx A Base R sSet + ndx R
50 28 42 49 sylancl R V A W ¬ Base R A R sSet + ndx R sSet Base ndx A Base R = R sSet Base ndx A Base R sSet + ndx R
51 36 50 eqtr4d R V A W ¬ Base R A mulGrp S = R sSet + ndx R sSet Base ndx A Base R
52 19 24 51 3eqtr4a R V A W ¬ Base R A M 𝑠 A = mulGrp S
53 16 52 pm2.61dan R V A W M 𝑠 A = mulGrp S