Metamath Proof Explorer


Theorem mhmimasplusg

Description: Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses mhmimasplusg.w W=F𝑠V
mhmimasplusg.b B=BaseV
mhmimasplusg.c C=BaseW
mhmimasplusg.x φXB
mhmimasplusg.y φYB
mhmimasplusg.1 φF:BontoC
mhmimasplusg.f φFVMndHomW
mhmimasplusg.2 +˙=+V
mhmimasplusg.3 ˙=+W
Assertion mhmimasplusg φFX˙FY=FX+˙Y

Proof

Step Hyp Ref Expression
1 mhmimasplusg.w W=F𝑠V
2 mhmimasplusg.b B=BaseV
3 mhmimasplusg.c C=BaseW
4 mhmimasplusg.x φXB
5 mhmimasplusg.y φYB
6 mhmimasplusg.1 φF:BontoC
7 mhmimasplusg.f φFVMndHomW
8 mhmimasplusg.2 +˙=+V
9 mhmimasplusg.3 ˙=+W
10 simprl φaBbBpBqBFa=FpFb=FqFa=Fp
11 simprr φaBbBpBqBFa=FpFb=FqFb=Fq
12 10 11 oveq12d φaBbBpBqBFa=FpFb=FqFa˙Fb=Fp˙Fq
13 7 3ad2ant1 φaBbBpBqBFVMndHomW
14 13 adantr φaBbBpBqBFa=FpFb=FqFVMndHomW
15 simpl2l φaBbBpBqBFa=FpFb=FqaB
16 simpl2r φaBbBpBqBFa=FpFb=FqbB
17 2 8 9 mhmlin FVMndHomWaBbBFa+˙b=Fa˙Fb
18 14 15 16 17 syl3anc φaBbBpBqBFa=FpFb=FqFa+˙b=Fa˙Fb
19 simpl3l φaBbBpBqBFa=FpFb=FqpB
20 simpl3r φaBbBpBqBFa=FpFb=FqqB
21 2 8 9 mhmlin FVMndHomWpBqBFp+˙q=Fp˙Fq
22 14 19 20 21 syl3anc φaBbBpBqBFa=FpFb=FqFp+˙q=Fp˙Fq
23 12 18 22 3eqtr4d φaBbBpBqBFa=FpFb=FqFa+˙b=Fp+˙q
24 23 ex φaBbBpBqBFa=FpFb=FqFa+˙b=Fp+˙q
25 1 a1i φW=F𝑠V
26 2 a1i φB=BaseV
27 mhmrcl1 FVMndHomWVMnd
28 7 27 syl φVMnd
29 6 24 25 26 28 8 9 imasaddval φXBYBFX˙FY=FX+˙Y
30 4 5 29 mpd3an23 φFX˙FY=FX+˙Y