Metamath Proof Explorer


Theorem mhpsubg

Description: Homogeneous polynomials form a subgroup of the polynomials. (Contributed by SN, 25-Sep-2023)

Ref Expression
Hypotheses mhpsubg.h H = I mHomP R
mhpsubg.p P = I mPoly R
mhpsubg.i φ I V
mhpsubg.r φ R Grp
mhpsubg.n φ N 0
Assertion mhpsubg φ H N SubGrp P

Proof

Step Hyp Ref Expression
1 mhpsubg.h H = I mHomP R
2 mhpsubg.p P = I mPoly R
3 mhpsubg.i φ I V
4 mhpsubg.r φ R Grp
5 mhpsubg.n φ N 0
6 eqid Base P = Base P
7 simpr φ x H N x H N
8 1 2 6 7 mhpmpl φ x H N x Base P
9 8 ex φ x H N x Base P
10 9 ssrdv φ H N Base P
11 eqid 0 R = 0 R
12 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
13 1 11 12 3 4 5 mhp0cl φ h 0 I | h -1 Fin × 0 R H N
14 13 ne0d φ H N
15 eqid + P = + P
16 4 adantr φ x H N R Grp
17 16 adantr φ x H N y H N R Grp
18 simplr φ x H N y H N x H N
19 simpr φ x H N y H N y H N
20 1 2 15 17 18 19 mhpaddcl φ x H N y H N x + P y H N
21 20 ralrimiva φ x H N y H N x + P y H N
22 eqid inv g P = inv g P
23 1 2 22 16 7 mhpinvcl φ x H N inv g P x H N
24 21 23 jca φ x H N y H N x + P y H N inv g P x H N
25 24 ralrimiva φ x H N y H N x + P y H N inv g P x H N
26 2 mplgrp I V R Grp P Grp
27 3 4 26 syl2anc φ P Grp
28 6 15 22 issubg2 P Grp H N SubGrp P H N Base P H N x H N y H N x + P y H N inv g P x H N
29 27 28 syl φ H N SubGrp P H N Base P H N x H N y H N x + P y H N inv g P x H N
30 10 14 25 29 mpbir3and φ H N SubGrp P