Description: Given any cardinal number A , there exists an argument x , which yields the least regular uncountable value of aleph which dominates A . This proof uses AC. (Contributed by RP, 24-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | minregex2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minregex | |
|
2 | eldifi | |
|
3 | iscard4 | |
|
4 | 2 3 | sylibr | |
5 | 4 | adantr | |
6 | alephcard | |
|
7 | 6 | a1i | |
8 | 5 7 | sseq12d | |
9 | numth3 | |
|
10 | alephon | |
|
11 | onenon | |
|
12 | 10 11 | mp1i | |
13 | carddom2 | |
|
14 | 9 12 13 | syl2an | |
15 | 8 14 | bitr3d | |
16 | 15 | 3anbi2d | |
17 | 16 | rabbidva | |
18 | 17 | inteqd | |
19 | 18 | eqeq2d | |
20 | 19 | rexbidv | |
21 | 1 20 | mpbid | |