Metamath Proof Explorer


Theorem minregex2

Description: Given any cardinal number A , there exists an argument x , which yields the least regular uncountable value of aleph which dominates A . This proof uses AC. (Contributed by RP, 24-Nov-2023)

Ref Expression
Assertion minregex2 ArancardωxOnx=yOn|yAycfy=y

Proof

Step Hyp Ref Expression
1 minregex ArancardωxOnx=yOn|yAycfy=y
2 eldifi ArancardωArancard
3 iscard4 cardA=AArancard
4 2 3 sylibr ArancardωcardA=A
5 4 adantr ArancardωyOncardA=A
6 alephcard cardy=y
7 6 a1i ArancardωyOncardy=y
8 5 7 sseq12d ArancardωyOncardAcardyAy
9 numth3 ArancardωAdomcard
10 alephon yOn
11 onenon yOnydomcard
12 10 11 mp1i yOnydomcard
13 carddom2 AdomcardydomcardcardAcardyAy
14 9 12 13 syl2an ArancardωyOncardAcardyAy
15 8 14 bitr3d ArancardωyOnAyAy
16 15 3anbi2d ArancardωyOnyAycfy=yyAycfy=y
17 16 rabbidva ArancardωyOn|yAycfy=y=yOn|yAycfy=y
18 17 inteqd ArancardωyOn|yAycfy=y=yOn|yAycfy=y
19 18 eqeq2d Arancardωx=yOn|yAycfy=yx=yOn|yAycfy=y
20 19 rexbidv ArancardωxOnx=yOn|yAycfy=yxOnx=yOn|yAycfy=y
21 1 20 mpbid ArancardωxOnx=yOn|yAycfy=y