Metamath Proof Explorer


Theorem mins1

Description: The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025)

Ref Expression
Assertion mins1 ANoBNoifAsBABsA

Proof

Step Hyp Ref Expression
1 iftrue AsBifAsBAB=A
2 1 adantl ANoBNoAsBifAsBAB=A
3 slerflex ANoAsA
4 3 ad2antrr ANoBNoAsBAsA
5 2 4 eqbrtrd ANoBNoAsBifAsBABsA
6 iffalse ¬AsBifAsBAB=B
7 6 adantl ANoBNo¬AsBifAsBAB=B
8 sletric ANoBNoAsBBsA
9 8 orcanai ANoBNo¬AsBBsA
10 7 9 eqbrtrd ANoBNo¬AsBifAsBABsA
11 5 10 pm2.61dan ANoBNoifAsBABsA