Metamath Proof Explorer


Theorem minusmod5ne

Description: A nonnegative integer is not itself minus a positive integer less than 5 modulo 5. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion minusmod5ne A 0 ..^ 5 K 1 ..^ 5 A K mod 5 A

Proof

Step Hyp Ref Expression
1 5nn 5
2 1 a1i A 0 ..^ 5 K 1 ..^ 5 5
3 elfzoelz A 0 ..^ 5 A
4 3 adantr A 0 ..^ 5 K 1 ..^ 5 A
5 elfzoelz K 1 ..^ 5 K
6 5 adantl A 0 ..^ 5 K 1 ..^ 5 K
7 4 6 zsubcld A 0 ..^ 5 K 1 ..^ 5 A K
8 3 zcnd A 0 ..^ 5 A
9 5 zcnd K 1 ..^ 5 K
10 nncan A K A A K = K
11 8 9 10 syl2an A 0 ..^ 5 K 1 ..^ 5 A A K = K
12 elfzo1 K 1 ..^ 5 K 5 K < 5
13 nnge1 K 1 K
14 13 anim1i K K < 5 1 K K < 5
15 14 3adant2 K 5 K < 5 1 K K < 5
16 12 15 sylbi K 1 ..^ 5 1 K K < 5
17 16 adantl A 0 ..^ 5 K 1 ..^ 5 1 K K < 5
18 breq2 A A K = K 1 A A K 1 K
19 breq1 A A K = K A A K < 5 K < 5
20 18 19 anbi12d A A K = K 1 A A K A A K < 5 1 K K < 5
21 17 20 syl5ibrcom A 0 ..^ 5 K 1 ..^ 5 A A K = K 1 A A K A A K < 5
22 11 21 mpd A 0 ..^ 5 K 1 ..^ 5 1 A A K A A K < 5
23 difltmodne 5 A A K 1 A A K A A K < 5 A mod 5 A K mod 5
24 2 4 7 22 23 syl121anc A 0 ..^ 5 K 1 ..^ 5 A mod 5 A K mod 5
25 24 necomd A 0 ..^ 5 K 1 ..^ 5 A K mod 5 A mod 5
26 zmodidfzoimp A 0 ..^ 5 A mod 5 = A
27 26 adantr A 0 ..^ 5 K 1 ..^ 5 A mod 5 = A
28 25 27 neeqtrd A 0 ..^ 5 K 1 ..^ 5 A K mod 5 A