Metamath Proof Explorer


Theorem mirf

Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
mirval.a φ A P
mirfv.m M = S A
Assertion mirf φ M : P P

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 mirval.a φ A P
8 mirfv.m M = S A
9 riotaex ι z P | A - ˙ z = A - ˙ y A z I y V
10 9 a1i φ y P ι z P | A - ˙ z = A - ˙ y A z I y V
11 1 2 3 4 5 6 7 mirval φ S A = y P ι z P | A - ˙ z = A - ˙ y A z I y
12 8 11 eqtrid φ M = y P ι z P | A - ˙ z = A - ˙ y A z I y
13 6 adantr φ x P G 𝒢 Tarski
14 7 adantr φ x P A P
15 simpr φ x P x P
16 1 2 3 4 5 13 14 8 15 mirfv φ x P M x = ι z P | A - ˙ z = A - ˙ x A z I x
17 1 2 3 13 15 14 mirreu3 φ x P ∃! z P A - ˙ z = A - ˙ x A z I x
18 riotacl ∃! z P A - ˙ z = A - ˙ x A z I x ι z P | A - ˙ z = A - ˙ x A z I x P
19 17 18 syl φ x P ι z P | A - ˙ z = A - ˙ x A z I x P
20 16 19 eqeltrd φ x P M x P
21 10 12 20 fmpt2d φ M : P P