Metamath Proof Explorer


Theorem mirmid

Description: Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
midcl.1 φ A P
midcl.2 φ B P
mirmid.s S = pInv 𝒢 G M
mirmid.x φ M P
Assertion mirmid φ S A mid 𝒢 G S B = S A mid 𝒢 G B

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 midcl.1 φ A P
7 midcl.2 φ B P
8 mirmid.s S = pInv 𝒢 G M
9 mirmid.x φ M P
10 eqidd φ A mid 𝒢 G B = A mid 𝒢 G B
11 eqid pInv 𝒢 G = pInv 𝒢 G
12 1 2 3 4 5 6 7 midcl φ A mid 𝒢 G B P
13 1 2 3 4 5 6 7 11 12 ismidb φ B = pInv 𝒢 G A mid 𝒢 G B A A mid 𝒢 G B = A mid 𝒢 G B
14 10 13 mpbird φ B = pInv 𝒢 G A mid 𝒢 G B A
15 14 fveq2d φ S B = S pInv 𝒢 G A mid 𝒢 G B A
16 eqid Line 𝒢 G = Line 𝒢 G
17 1 2 3 16 11 4 9 8 6 12 mirmir2 φ S pInv 𝒢 G A mid 𝒢 G B A = pInv 𝒢 G S A mid 𝒢 G B S A
18 15 17 eqtrd φ S B = pInv 𝒢 G S A mid 𝒢 G B S A
19 1 2 3 16 11 4 9 8 6 mircl φ S A P
20 1 2 3 16 11 4 9 8 7 mircl φ S B P
21 1 2 3 16 11 4 9 8 12 mircl φ S A mid 𝒢 G B P
22 1 2 3 4 5 19 20 11 21 ismidb φ S B = pInv 𝒢 G S A mid 𝒢 G B S A S A mid 𝒢 G S B = S A mid 𝒢 G B
23 18 22 mpbid φ S A mid 𝒢 G S B = S A mid 𝒢 G B