Metamath Proof Explorer


Theorem mndvrid

Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses mndvcl.b B=BaseM
mndvcl.p +˙=+M
mndvlid.z 0˙=0M
Assertion mndvrid MMndXBIX+˙fI×0˙=X

Proof

Step Hyp Ref Expression
1 mndvcl.b B=BaseM
2 mndvcl.p +˙=+M
3 mndvlid.z 0˙=0M
4 elmapex XBIBVIV
5 4 simprd XBIIV
6 5 adantl MMndXBIIV
7 elmapi XBIX:IB
8 7 adantl MMndXBIX:IB
9 1 3 mndidcl MMnd0˙B
10 9 adantr MMndXBI0˙B
11 1 2 3 mndrid MMndxBx+˙0˙=x
12 11 adantlr MMndXBIxBx+˙0˙=x
13 6 8 10 12 caofid0r MMndXBIX+˙fI×0˙=X