Metamath Proof Explorer


Theorem mnringbasefd

Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringbasefd.2 B=BaseF
mnringbasefd.3 A=BaseM
mnringbasefd.4 C=BaseR
mnringbasefd.5 φRU
mnringbasefd.6 φMW
mnringbasefd.7 φXB
Assertion mnringbasefd φX:AC

Proof

Step Hyp Ref Expression
1 mnringbasefd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringbasefd.2 B=BaseF
3 mnringbasefd.3 A=BaseM
4 mnringbasefd.4 C=BaseR
5 mnringbasefd.5 φRU
6 mnringbasefd.6 φMW
7 mnringbasefd.7 φXB
8 eqid 0R=0R
9 1 2 3 4 8 5 6 mnringelbased φXBXCAfinSupp0RX
10 7 9 mpbid φXCAfinSupp0RX
11 10 simpld φXCA
12 elmapi XCAX:AC
13 11 12 syl φX:AC