Metamath Proof Explorer


Theorem mnringbasefd

Description: Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringbasefd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringbasefd.2 B = Base F
mnringbasefd.3 A = Base M
mnringbasefd.4 C = Base R
mnringbasefd.5 φ R U
mnringbasefd.6 φ M W
mnringbasefd.7 φ X B
Assertion mnringbasefd φ X : A C

Proof

Step Hyp Ref Expression
1 mnringbasefd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringbasefd.2 B = Base F
3 mnringbasefd.3 A = Base M
4 mnringbasefd.4 C = Base R
5 mnringbasefd.5 φ R U
6 mnringbasefd.6 φ M W
7 mnringbasefd.7 φ X B
8 eqid 0 R = 0 R
9 1 2 3 4 8 5 6 mnringelbased φ X B X C A finSupp 0 R X
10 7 9 mpbid φ X C A finSupp 0 R X
11 10 simpld φ X C A
12 elmapi X C A X : A C
13 11 12 syl φ X : A C