Metamath Proof Explorer


Theorem mnringelbased

Description: Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringelbased.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringelbased.2 B=BaseF
mnringelbased.3 A=BaseM
mnringelbased.4 C=BaseR
mnringelbased.5 0˙=0R
mnringelbased.6 φRU
mnringelbased.7 φMW
Assertion mnringelbased φXBXCAfinSupp0˙X

Proof

Step Hyp Ref Expression
1 mnringelbased.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringelbased.2 B=BaseF
3 mnringelbased.3 A=BaseM
4 mnringelbased.4 C=BaseR
5 mnringelbased.5 0˙=0R
6 mnringelbased.6 φRU
7 mnringelbased.7 φMW
8 eqid RfreeLModA=RfreeLModA
9 1 2 3 8 6 7 mnringbaserd φB=BaseRfreeLModA
10 9 eleq2d φXBXBaseRfreeLModA
11 3 fvexi AV
12 eqid BaseRfreeLModA=BaseRfreeLModA
13 8 4 5 12 frlmelbas RUAVXBaseRfreeLModAXCAfinSupp0˙X
14 6 11 13 sylancl φXBaseRfreeLModAXCAfinSupp0˙X
15 10 14 bitrd φXBXCAfinSupp0˙X