Metamath Proof Explorer


Theorem moabex

Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996)

Ref Expression
Assertion moabex *xφx|φV

Proof

Step Hyp Ref Expression
1 df-mo *xφyxφx=y
2 abss x|φyxφxy
3 velsn xyx=y
4 3 imbi2i φxyφx=y
5 4 albii xφxyxφx=y
6 2 5 bitri x|φyxφx=y
7 vsnex yV
8 7 ssex x|φyx|φV
9 6 8 sylbir xφx=yx|φV
10 9 exlimiv yxφx=yx|φV
11 1 10 sylbi *xφx|φV