Metamath Proof Explorer


Theorem modvalp1

Description: The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion modvalp1 AB+A+B-AB+1B=AmodB

Proof

Step Hyp Ref Expression
1 recn AA
2 1 adantr AB+A
3 refldivcl AB+AB
4 3 recnd AB+AB
5 rpcn B+B
6 5 adantl AB+B
7 4 6 mulcld AB+ABB
8 2 7 6 pnpcan2d AB+A+B-ABB+B=AABB
9 4 6 adddirp1d AB+AB+1B=ABB+B
10 9 oveq2d AB+A+B-AB+1B=A+B-ABB+B
11 modvalr AB+AmodB=AABB
12 8 10 11 3eqtr4d AB+A+B-AB+1B=AmodB