Metamath Proof Explorer


Theorem mofeu

Description: The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses mofeu.1 G=A×B
mofeu.2 φB=A=
mofeu.3 φ*xxB
Assertion mofeu φF:ABF=G

Proof

Step Hyp Ref Expression
1 mofeu.1 G=A×B
2 mofeu.2 φB=A=
3 mofeu.3 φ*xxB
4 2 imp φB=A=
5 f00 F:AF=A=
6 5 rbaib A=F:AF=
7 4 6 syl φB=F:AF=
8 feq3 B=F:ABF:A
9 8 adantl φB=F:ABF:A
10 xpeq2 B=A×B=A×
11 xp0 A×=
12 10 11 eqtrdi B=A×B=
13 1 12 eqtrid B=G=
14 13 adantl φB=G=
15 14 eqeq2d φB=F=GF=
16 7 9 15 3bitr4d φB=F:ABF=G
17 19.42v yφB=yφyB=y
18 fconst2g yVF:AyF=A×y
19 18 elv F:AyF=A×y
20 feq3 B=yF:ABF:Ay
21 xpeq2 B=yA×B=A×y
22 21 eqeq2d B=yF=A×BF=A×y
23 20 22 bibi12d B=yF:ABF=A×BF:AyF=A×y
24 19 23 mpbiri B=yF:ABF=A×B
25 1 eqeq2i F=GF=A×B
26 24 25 bitr4di B=yF:ABF=G
27 26 adantl φB=yF:ABF=G
28 27 exlimiv yφB=yF:ABF=G
29 17 28 sylbir φyB=yF:ABF=G
30 mo0sn *xxBB=yB=y
31 3 30 sylib φB=yB=y
32 16 29 31 mpjaodan φF:ABF=G