Description: The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mofeu.1 | |
|
mofeu.2 | |
||
mofeu.3 | |
||
Assertion | mofeu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofeu.1 | |
|
2 | mofeu.2 | |
|
3 | mofeu.3 | |
|
4 | 2 | imp | |
5 | f00 | |
|
6 | 5 | rbaib | |
7 | 4 6 | syl | |
8 | feq3 | |
|
9 | 8 | adantl | |
10 | xpeq2 | |
|
11 | xp0 | |
|
12 | 10 11 | eqtrdi | |
13 | 1 12 | eqtrid | |
14 | 13 | adantl | |
15 | 14 | eqeq2d | |
16 | 7 9 15 | 3bitr4d | |
17 | 19.42v | |
|
18 | fconst2g | |
|
19 | 18 | elv | |
20 | feq3 | |
|
21 | xpeq2 | |
|
22 | 21 | eqeq2d | |
23 | 20 22 | bibi12d | |
24 | 19 23 | mpbiri | |
25 | 1 | eqeq2i | |
26 | 24 25 | bitr4di | |
27 | 26 | adantl | |
28 | 27 | exlimiv | |
29 | 17 28 | sylbir | |
30 | mo0sn | |
|
31 | 3 30 | sylib | |
32 | 16 29 31 | mpjaodan | |