Metamath Proof Explorer


Theorem mofeu

Description: The uniqueness of a function into a set with at most one element. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses mofeu.1 G = A × B
mofeu.2 φ B = A =
mofeu.3 φ * x x B
Assertion mofeu φ F : A B F = G

Proof

Step Hyp Ref Expression
1 mofeu.1 G = A × B
2 mofeu.2 φ B = A =
3 mofeu.3 φ * x x B
4 2 imp φ B = A =
5 f00 F : A F = A =
6 5 rbaib A = F : A F =
7 4 6 syl φ B = F : A F =
8 feq3 B = F : A B F : A
9 8 adantl φ B = F : A B F : A
10 xpeq2 B = A × B = A ×
11 xp0 A × =
12 10 11 eqtrdi B = A × B =
13 1 12 eqtrid B = G =
14 13 adantl φ B = G =
15 14 eqeq2d φ B = F = G F =
16 7 9 15 3bitr4d φ B = F : A B F = G
17 19.42v y φ B = y φ y B = y
18 fconst2g y V F : A y F = A × y
19 18 elv F : A y F = A × y
20 feq3 B = y F : A B F : A y
21 xpeq2 B = y A × B = A × y
22 21 eqeq2d B = y F = A × B F = A × y
23 20 22 bibi12d B = y F : A B F = A × B F : A y F = A × y
24 19 23 mpbiri B = y F : A B F = A × B
25 1 eqeq2i F = G F = A × B
26 24 25 bitr4di B = y F : A B F = G
27 26 adantl φ B = y F : A B F = G
28 27 exlimiv y φ B = y F : A B F = G
29 17 28 sylbir φ y B = y F : A B F = G
30 mo0sn * x x B B = y B = y
31 3 30 sylib φ B = y B = y
32 16 29 31 mpjaodan φ F : A B F = G