Metamath Proof Explorer


Theorem mon1pval

Description: Value of the set of monic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pval.p P=Poly1R
uc1pval.b B=BaseP
uc1pval.z 0˙=0P
uc1pval.d D=deg1R
mon1pval.m M=Monic1pR
mon1pval.o 1˙=1R
Assertion mon1pval M=fB|f0˙coe1fDf=1˙

Proof

Step Hyp Ref Expression
1 uc1pval.p P=Poly1R
2 uc1pval.b B=BaseP
3 uc1pval.z 0˙=0P
4 uc1pval.d D=deg1R
5 mon1pval.m M=Monic1pR
6 mon1pval.o 1˙=1R
7 fveq2 r=RPoly1r=Poly1R
8 7 1 eqtr4di r=RPoly1r=P
9 8 fveq2d r=RBasePoly1r=BaseP
10 9 2 eqtr4di r=RBasePoly1r=B
11 8 fveq2d r=R0Poly1r=0P
12 11 3 eqtr4di r=R0Poly1r=0˙
13 12 neeq2d r=Rf0Poly1rf0˙
14 fveq2 r=Rdeg1r=deg1R
15 14 4 eqtr4di r=Rdeg1r=D
16 15 fveq1d r=Rdeg1rf=Df
17 16 fveq2d r=Rcoe1fdeg1rf=coe1fDf
18 fveq2 r=R1r=1R
19 18 6 eqtr4di r=R1r=1˙
20 17 19 eqeq12d r=Rcoe1fdeg1rf=1rcoe1fDf=1˙
21 13 20 anbi12d r=Rf0Poly1rcoe1fdeg1rf=1rf0˙coe1fDf=1˙
22 10 21 rabeqbidv r=RfBasePoly1r|f0Poly1rcoe1fdeg1rf=1r=fB|f0˙coe1fDf=1˙
23 df-mon1 Monic1p=rVfBasePoly1r|f0Poly1rcoe1fdeg1rf=1r
24 2 fvexi BV
25 24 rabex fB|f0˙coe1fDf=1˙V
26 22 23 25 fvmpt RVMonic1pR=fB|f0˙coe1fDf=1˙
27 fvprc ¬RVMonic1pR=
28 ssrab2 fB|f0˙coe1fDf=1˙B
29 fvprc ¬RVPoly1R=
30 1 29 eqtrid ¬RVP=
31 30 fveq2d ¬RVBaseP=Base
32 2 31 eqtrid ¬RVB=Base
33 base0 =Base
34 32 33 eqtr4di ¬RVB=
35 28 34 sseqtrid ¬RVfB|f0˙coe1fDf=1˙
36 ss0 fB|f0˙coe1fDf=1˙fB|f0˙coe1fDf=1˙=
37 35 36 syl ¬RVfB|f0˙coe1fDf=1˙=
38 27 37 eqtr4d ¬RVMonic1pR=fB|f0˙coe1fDf=1˙
39 26 38 pm2.61i Monic1pR=fB|f0˙coe1fDf=1˙
40 5 39 eqtri M=fB|f0˙coe1fDf=1˙