Metamath Proof Explorer


Theorem mplascl1

Description: The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses mplascl1.w W=ImPolyR
mplascl1.a A=algScW
mplascl1.o O=1R
mplascl1.1 1˙=1W
mplascl1.i φIV
mplascl1.r φRRing
Assertion mplascl1 φAO=1˙

Proof

Step Hyp Ref Expression
1 mplascl1.w W=ImPolyR
2 mplascl1.a A=algScW
3 mplascl1.o O=1R
4 mplascl1.1 1˙=1W
5 mplascl1.i φIV
6 mplascl1.r φRRing
7 1 5 6 mplsca φR=ScalarW
8 7 fveq2d φ1R=1ScalarW
9 3 8 eqtrid φO=1ScalarW
10 9 fveq2d φAO=A1ScalarW
11 eqid ScalarW=ScalarW
12 1 5 6 mpllmodd φWLMod
13 1 5 6 mplringd φWRing
14 2 11 12 13 ascl1 φA1ScalarW=1W
15 10 14 eqtrd φAO=1W
16 15 4 eqtr4di φAO=1˙