Metamath Proof Explorer


Theorem mptcfsupp

Description: A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypotheses suppmptcfin.b B=BaseM
suppmptcfin.r R=ScalarM
suppmptcfin.0 0˙=0R
suppmptcfin.1 1˙=1R
suppmptcfin.f F=xVifx=X1˙0˙
Assertion mptcfsupp MLModV𝒫BXVfinSupp0˙F

Proof

Step Hyp Ref Expression
1 suppmptcfin.b B=BaseM
2 suppmptcfin.r R=ScalarM
3 suppmptcfin.0 0˙=0R
4 suppmptcfin.1 1˙=1R
5 suppmptcfin.f F=xVifx=X1˙0˙
6 5 funmpt2 FunF
7 6 a1i MLModV𝒫BXVFunF
8 1 2 3 4 5 suppmptcfin MLModV𝒫BXVFsupp0˙Fin
9 mptexg V𝒫BxVifx=X1˙0˙V
10 5 9 eqeltrid V𝒫BFV
11 10 3ad2ant2 MLModV𝒫BXVFV
12 3 fvexi 0˙V
13 isfsupp FV0˙VfinSupp0˙FFunFFsupp0˙Fin
14 11 12 13 sylancl MLModV𝒫BXVfinSupp0˙FFunFFsupp0˙Fin
15 7 8 14 mpbir2and MLModV𝒫BXVfinSupp0˙F