Metamath Proof Explorer


Theorem mptctf

Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypothesis mptctf.1 _ x A
Assertion mptctf A ω x A B ω

Proof

Step Hyp Ref Expression
1 mptctf.1 _ x A
2 funmpt Fun x A B
3 ctex A ω A V
4 eqid x A B = x A B
5 4 dmmpt dom x A B = x A | B V
6 df-rab x A | B V = x | x A B V
7 simpl x A B V x A
8 7 ss2abi x | x A B V x | x A
9 1 abid2f x | x A = A
10 8 9 sseqtri x | x A B V A
11 6 10 eqsstri x A | B V A
12 5 11 eqsstri dom x A B A
13 ssdomg A V dom x A B A dom x A B A
14 3 12 13 mpisyl A ω dom x A B A
15 domtr dom x A B A A ω dom x A B ω
16 14 15 mpancom A ω dom x A B ω
17 funfn Fun x A B x A B Fn dom x A B
18 fnct x A B Fn dom x A B dom x A B ω x A B ω
19 17 18 sylanb Fun x A B dom x A B ω x A B ω
20 2 16 19 sylancr A ω x A B ω