Metamath Proof Explorer


Theorem mptpreima

Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypothesis dmmpt.1 F=xAB
Assertion mptpreima F-1C=xA|BC

Proof

Step Hyp Ref Expression
1 dmmpt.1 F=xAB
2 df-mpt xAB=xy|xAy=B
3 1 2 eqtri F=xy|xAy=B
4 3 cnveqi F-1=xy|xAy=B-1
5 cnvopab xy|xAy=B-1=yx|xAy=B
6 4 5 eqtri F-1=yx|xAy=B
7 6 imaeq1i F-1C=yx|xAy=BC
8 df-ima yx|xAy=BC=ranyx|xAy=BC
9 resopab yx|xAy=BC=yx|yCxAy=B
10 9 rneqi ranyx|xAy=BC=ranyx|yCxAy=B
11 ancom yCxAy=BxAy=ByC
12 anass xAy=ByCxAy=ByC
13 11 12 bitri yCxAy=BxAy=ByC
14 13 exbii yyCxAy=ByxAy=ByC
15 19.42v yxAy=ByCxAyy=ByC
16 dfclel BCyy=ByC
17 16 bicomi yy=ByCBC
18 17 anbi2i xAyy=ByCxABC
19 15 18 bitri yxAy=ByCxABC
20 14 19 bitri yyCxAy=BxABC
21 20 abbii x|yyCxAy=B=x|xABC
22 rnopab ranyx|yCxAy=B=x|yyCxAy=B
23 df-rab xA|BC=x|xABC
24 21 22 23 3eqtr4i ranyx|yCxAy=B=xA|BC
25 10 24 eqtri ranyx|xAy=BC=xA|BC
26 8 25 eqtri yx|xAy=BC=xA|BC
27 7 26 eqtri F-1C=xA|BC