Metamath Proof Explorer


Theorem mrcfval

Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcfval CMooreXF=x𝒫XsC|xs

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 fvssunirn MooreXranMoore
3 2 sseli CMooreXCranMoore
4 unieq c=Cc=C
5 4 pweqd c=C𝒫c=𝒫C
6 rabeq c=Csc|xs=sC|xs
7 6 inteqd c=Csc|xs=sC|xs
8 5 7 mpteq12dv c=Cx𝒫csc|xs=x𝒫CsC|xs
9 df-mrc mrCls=cranMoorex𝒫csc|xs
10 mreunirn cranMoorecMoorec
11 mrcflem cMoorecx𝒫csc|xs:𝒫cc
12 10 11 sylbi cranMoorex𝒫csc|xs:𝒫cc
13 fssxp x𝒫csc|xs:𝒫ccx𝒫csc|xs𝒫c×c
14 12 13 syl cranMoorex𝒫csc|xs𝒫c×c
15 vuniex cV
16 15 pwex 𝒫cV
17 vex cV
18 16 17 xpex 𝒫c×cV
19 ssexg x𝒫csc|xs𝒫c×c𝒫c×cVx𝒫csc|xsV
20 14 18 19 sylancl cranMoorex𝒫csc|xsV
21 8 9 20 fvmpt3 CranMooremrClsC=x𝒫CsC|xs
22 3 21 syl CMooreXmrClsC=x𝒫CsC|xs
23 mreuni CMooreXC=X
24 23 pweqd CMooreX𝒫C=𝒫X
25 24 mpteq1d CMooreXx𝒫CsC|xs=x𝒫XsC|xs
26 22 25 eqtrd CMooreXmrClsC=x𝒫XsC|xs
27 1 26 eqtrid CMooreXF=x𝒫XsC|xs