Metamath Proof Explorer


Theorem mrcfval

Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F = mrCls C
Assertion mrcfval C Moore X F = x 𝒫 X s C | x s

Proof

Step Hyp Ref Expression
1 mrcfval.f F = mrCls C
2 fvssunirn Moore X ran Moore
3 2 sseli C Moore X C ran Moore
4 unieq c = C c = C
5 4 pweqd c = C 𝒫 c = 𝒫 C
6 rabeq c = C s c | x s = s C | x s
7 6 inteqd c = C s c | x s = s C | x s
8 5 7 mpteq12dv c = C x 𝒫 c s c | x s = x 𝒫 C s C | x s
9 df-mrc mrCls = c ran Moore x 𝒫 c s c | x s
10 mreunirn c ran Moore c Moore c
11 mrcflem c Moore c x 𝒫 c s c | x s : 𝒫 c c
12 10 11 sylbi c ran Moore x 𝒫 c s c | x s : 𝒫 c c
13 fssxp x 𝒫 c s c | x s : 𝒫 c c x 𝒫 c s c | x s 𝒫 c × c
14 12 13 syl c ran Moore x 𝒫 c s c | x s 𝒫 c × c
15 vuniex c V
16 15 pwex 𝒫 c V
17 vex c V
18 16 17 xpex 𝒫 c × c V
19 ssexg x 𝒫 c s c | x s 𝒫 c × c 𝒫 c × c V x 𝒫 c s c | x s V
20 14 18 19 sylancl c ran Moore x 𝒫 c s c | x s V
21 8 9 20 fvmpt3 C ran Moore mrCls C = x 𝒫 C s C | x s
22 3 21 syl C Moore X mrCls C = x 𝒫 C s C | x s
23 mreuni C Moore X C = X
24 23 pweqd C Moore X 𝒫 C = 𝒫 X
25 24 mpteq1d C Moore X x 𝒫 C s C | x s = x 𝒫 X s C | x s
26 22 25 eqtrd C Moore X mrCls C = x 𝒫 X s C | x s
27 1 26 syl5eq C Moore X F = x 𝒫 X s C | x s