Metamath Proof Explorer


Theorem mrisval

Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrisval.1 N=mrClsA
mrisval.2 I=mrIndA
Assertion mrisval AMooreXI=s𝒫X|xs¬xNsx

Proof

Step Hyp Ref Expression
1 mrisval.1 N=mrClsA
2 mrisval.2 I=mrIndA
3 fvssunirn MooreXranMoore
4 3 sseli AMooreXAranMoore
5 unieq c=Ac=A
6 5 pweqd c=A𝒫c=𝒫A
7 fveq2 c=AmrClsc=mrClsA
8 7 1 eqtr4di c=AmrClsc=N
9 8 fveq1d c=AmrClscsx=Nsx
10 9 eleq2d c=AxmrClscsxxNsx
11 10 notbid c=A¬xmrClscsx¬xNsx
12 11 ralbidv c=Axs¬xmrClscsxxs¬xNsx
13 6 12 rabeqbidv c=As𝒫c|xs¬xmrClscsx=s𝒫A|xs¬xNsx
14 df-mri mrInd=cranMoores𝒫c|xs¬xmrClscsx
15 vuniex cV
16 15 pwex 𝒫cV
17 16 rabex s𝒫c|xs¬xmrClscsxV
18 13 14 17 fvmpt3i AranMooremrIndA=s𝒫A|xs¬xNsx
19 4 18 syl AMooreXmrIndA=s𝒫A|xs¬xNsx
20 2 19 eqtrid AMooreXI=s𝒫A|xs¬xNsx
21 mreuni AMooreXA=X
22 21 pweqd AMooreX𝒫A=𝒫X
23 22 rabeqdv AMooreXs𝒫A|xs¬xNsx=s𝒫X|xs¬xNsx
24 20 23 eqtrd AMooreXI=s𝒫X|xs¬xNsx