Description: Product of two sums. (Contributed by NM, 14-Jan-2006) (Proof shortened by Andrew Salmon, 19-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | muladd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl | |
|
2 | adddi | |
|
3 | 2 | 3expb | |
4 | 1 3 | sylan | |
5 | adddir | |
|
6 | 5 | 3expa | |
7 | 6 | adantrr | |
8 | adddir | |
|
9 | 8 | 3expa | |
10 | 9 | adantrl | |
11 | 7 10 | oveq12d | |
12 | mulcl | |
|
13 | 12 | ad2ant2r | |
14 | mulcl | |
|
15 | 14 | ad2ant2lr | |
16 | mulcl | |
|
17 | mulcl | |
|
18 | addcl | |
|
19 | 16 17 18 | syl2an | |
20 | 19 | anandirs | |
21 | 20 | adantrl | |
22 | 13 15 21 | add32d | |
23 | mulcom | |
|
24 | 23 | ad2ant2l | |
25 | 24 | oveq2d | |
26 | 16 | ad2ant2rl | |
27 | 17 | ad2ant2l | |
28 | 13 26 27 | addassd | |
29 | mulcl | |
|
30 | 29 | ancoms | |
31 | 30 | ad2ant2l | |
32 | 13 26 31 | add32d | |
33 | 25 28 32 | 3eqtr3d | |
34 | mulcom | |
|
35 | 34 | ad2ant2lr | |
36 | 33 35 | oveq12d | |
37 | addcl | |
|
38 | 12 30 37 | syl2an | |
39 | 38 | an4s | |
40 | mulcl | |
|
41 | 40 | ancoms | |
42 | 41 | ad2ant2lr | |
43 | 39 26 42 | addassd | |
44 | 22 36 43 | 3eqtrd | |
45 | 4 11 44 | 3eqtrd | |