| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0red |  | 
						
							| 2 |  | simpl |  | 
						
							| 3 | 1 2 | leloed |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 1 4 | leloed |  | 
						
							| 6 | 3 5 | anbi12d |  | 
						
							| 7 |  | 0red |  | 
						
							| 8 |  | simpll |  | 
						
							| 9 |  | simplr |  | 
						
							| 10 | 8 9 | remulcld |  | 
						
							| 11 |  | mulgt0 |  | 
						
							| 12 | 11 | an4s |  | 
						
							| 13 | 7 10 12 | ltled |  | 
						
							| 14 | 13 | ex |  | 
						
							| 15 |  | 0re |  | 
						
							| 16 |  | leid |  | 
						
							| 17 | 15 16 | ax-mp |  | 
						
							| 18 | 4 | recnd |  | 
						
							| 19 | 18 | mul02d |  | 
						
							| 20 | 17 19 | breqtrrid |  | 
						
							| 21 |  | oveq1 |  | 
						
							| 22 | 21 | breq2d |  | 
						
							| 23 | 20 22 | syl5ibcom |  | 
						
							| 24 | 23 | adantrd |  | 
						
							| 25 | 2 | recnd |  | 
						
							| 26 | 25 | mul01d |  | 
						
							| 27 | 17 26 | breqtrrid |  | 
						
							| 28 |  | oveq2 |  | 
						
							| 29 | 28 | breq2d |  | 
						
							| 30 | 27 29 | syl5ibcom |  | 
						
							| 31 | 30 | adantld |  | 
						
							| 32 | 30 | adantld |  | 
						
							| 33 | 14 24 31 32 | ccased |  | 
						
							| 34 | 6 33 | sylbid |  | 
						
							| 35 | 34 | imp |  | 
						
							| 36 | 35 | an4s |  |