Metamath Proof Explorer


Theorem mulltgt0d

Description: Negative times positive is negative. (Contributed by SN, 26-Nov-2025)

Ref Expression
Hypotheses mullt0b1d.a φ A
mullt0b1d.b φ B
mullt0b1d.1 φ A < 0
mulltgt0d.2 φ 0 < B
Assertion mulltgt0d φ A B < 0

Proof

Step Hyp Ref Expression
1 mullt0b1d.a φ A
2 mullt0b1d.b φ B
3 mullt0b1d.1 φ A < 0
4 mulltgt0d.2 φ 0 < B
5 3 lt0ne0d φ A 0
6 4 gt0ne0d φ B 0
7 5 6 jca φ A 0 B 0
8 neanior A 0 B 0 ¬ A = 0 B = 0
9 7 8 sylib φ ¬ A = 0 B = 0
10 1 2 sn-remul0ord φ A B = 0 A = 0 B = 0
11 9 10 mtbird φ ¬ A B = 0
12 0red φ 0
13 1 12 3 ltnsymd φ ¬ 0 < A
14 1 2 4 mulgt0b2d φ 0 < A 0 < A B
15 13 14 mtbid φ ¬ 0 < A B
16 ioran ¬ A B = 0 0 < A B ¬ A B = 0 ¬ 0 < A B
17 11 15 16 sylanbrc φ ¬ A B = 0 0 < A B
18 1 2 remulcld φ A B
19 18 12 lttrid φ A B < 0 ¬ A B = 0 0 < A B
20 17 19 mpbird φ A B < 0