Metamath Proof Explorer


Theorem mxidlprmALT

Description: Every maximal ideal is prime - alternative proof. (Contributed by Thierry Arnoux, 15-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mxidlprmALT.1 φRCRing
mxidlprmALT.2 No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
Assertion mxidlprmALT Could not format assertion : No typesetting found for |- ( ph -> M e. ( PrmIdeal ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlprmALT.1 φRCRing
2 mxidlprmALT.2 Could not format ( ph -> M e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( MaxIdeal ` R ) ) with typecode |-
3 eqid R/𝑠R~QGM=R/𝑠R~QGM
4 1 crngringd φRRing
5 eqid BaseR=BaseR
6 5 mxidlnzr Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) with typecode |-
7 4 2 6 syl2anc φRNzRing
8 5 mxidlidl Could not format ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) with typecode |-
9 4 2 8 syl2anc φMLIdealR
10 3 1 7 9 qsfld Could not format ( ph -> ( ( R /s ( R ~QG M ) ) e. Field <-> M e. ( MaxIdeal ` R ) ) ) : No typesetting found for |- ( ph -> ( ( R /s ( R ~QG M ) ) e. Field <-> M e. ( MaxIdeal ` R ) ) ) with typecode |-
11 2 10 mpbird φR/𝑠R~QGMField
12 fldidom R/𝑠R~QGMFieldR/𝑠R~QGMIDomn
13 11 12 syl φR/𝑠R~QGMIDomn
14 3 qsidom Could not format ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) : No typesetting found for |- ( ( R e. CRing /\ M e. ( LIdeal ` R ) ) -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) with typecode |-
15 1 9 14 syl2anc Could not format ( ph -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) : No typesetting found for |- ( ph -> ( ( R /s ( R ~QG M ) ) e. IDomn <-> M e. ( PrmIdeal ` R ) ) ) with typecode |-
16 13 15 mpbid Could not format ( ph -> M e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ph -> M e. ( PrmIdeal ` R ) ) with typecode |-