Metamath Proof Explorer


Theorem mxidlval

Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B=BaseR
Assertion mxidlval Could not format assertion : No typesetting found for |- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlval.1 B=BaseR
2 fveq2 r=RLIdealr=LIdealR
3 fveq2 r=RBaser=BaseR
4 3 1 eqtr4di r=RBaser=B
5 4 neeq2d r=RiBaseriB
6 4 eqeq2d r=Rj=Baserj=B
7 6 orbi2d r=Rj=ij=Baserj=ij=B
8 7 imbi2d r=Rijj=ij=Baserijj=ij=B
9 2 8 raleqbidv r=RjLIdealrijj=ij=BaserjLIdealRijj=ij=B
10 5 9 anbi12d r=RiBaserjLIdealrijj=ij=BaseriBjLIdealRijj=ij=B
11 2 10 rabeqbidv r=RiLIdealr|iBaserjLIdealrijj=ij=Baser=iLIdealR|iBjLIdealRijj=ij=B
12 df-mxidl Could not format MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) : No typesetting found for |- MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) with typecode |-
13 fvex LIdealRV
14 13 rabex iLIdealR|iBjLIdealRijj=ij=BV
15 11 12 14 fvmpt Could not format ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) : No typesetting found for |- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) with typecode |-