Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mxidlval.1 | |
|
Assertion | mxidlval | Could not format assertion : No typesetting found for |- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) with typecode |- |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mxidlval.1 | |
|
2 | fveq2 | |
|
3 | fveq2 | |
|
4 | 3 1 | eqtr4di | |
5 | 4 | neeq2d | |
6 | 4 | eqeq2d | |
7 | 6 | orbi2d | |
8 | 7 | imbi2d | |
9 | 2 8 | raleqbidv | |
10 | 5 9 | anbi12d | |
11 | 2 10 | rabeqbidv | |
12 | df-mxidl | Could not format MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) : No typesetting found for |- MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) with typecode |- | |
13 | fvex | |
|
14 | 13 | rabex | |
15 | 11 12 14 | fvmpt | Could not format ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) : No typesetting found for |- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) with typecode |- |