| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | eleq1d |  | 
						
							| 3 | 2 | imbi2d |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 | 4 | eleq1d |  | 
						
							| 6 | 5 | imbi2d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 | 7 | eleq1d |  | 
						
							| 9 | 8 | imbi2d |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 10 | eleq1d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | n0sno |  | 
						
							| 14 |  | muls01 |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 |  | 0n0s |  | 
						
							| 17 | 15 16 | eqeltrdi |  | 
						
							| 18 | 13 | ad2antrr |  | 
						
							| 19 |  | n0sno |  | 
						
							| 20 | 19 | ad2antlr |  | 
						
							| 21 |  | 1sno |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 | 18 20 22 | addsdid |  | 
						
							| 24 | 13 | mulsridd |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 | 25 | ad2antrr |  | 
						
							| 27 | 23 26 | eqtrd |  | 
						
							| 28 |  | n0addscl |  | 
						
							| 29 | 28 | ancoms |  | 
						
							| 30 | 29 | adantlr |  | 
						
							| 31 | 27 30 | eqeltrd |  | 
						
							| 32 | 31 | ex |  | 
						
							| 33 | 32 | expcom |  | 
						
							| 34 | 33 | a2d |  | 
						
							| 35 | 3 6 9 12 17 34 | n0sind |  | 
						
							| 36 | 35 | impcom |  |