Metamath Proof Explorer


Theorem nadd1rabex

Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd1rabex Could not format assertion : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( x +no B ) e. C } e. _V ) with typecode |-

Proof

Step Hyp Ref Expression
1 simpl2 OrdABOnCOnxABOn
2 ordelon OrdAxAxOn
3 2 3ad2antl1 OrdABOnCOnxAxOn
4 naddcom Could not format ( ( B e. On /\ x e. On ) -> ( B +no x ) = ( x +no B ) ) : No typesetting found for |- ( ( B e. On /\ x e. On ) -> ( B +no x ) = ( x +no B ) ) with typecode |-
5 1 3 4 syl2anc Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( B +no x ) = ( x +no B ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( B +no x ) = ( x +no B ) ) with typecode |-
6 5 eleq1d Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C <-> ( x +no B ) e. C ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C <-> ( x +no B ) e. C ) ) with typecode |-
7 6 rabbidva Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } = { x e. A | ( x +no B ) e. C } ) with typecode |-
8 nadd2rabex Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) with typecode |-
9 7 8 eqeltrrd Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( x +no B ) e. C } e. _V ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( x +no B ) e. C } e. _V ) with typecode |-