Metamath Proof Explorer


Theorem nadd2rabex

Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024)

Ref Expression
Assertion nadd2rabex Could not format assertion : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) with typecode |-

Proof

Step Hyp Ref Expression
1 simp3 OrdABOnCOnCOn
2 0elon On
3 ordelon OrdAxAxOn
4 3 3ad2antl1 OrdABOnCOnxAxOn
5 naddcom Could not format ( ( (/) e. On /\ x e. On ) -> ( (/) +no x ) = ( x +no (/) ) ) : No typesetting found for |- ( ( (/) e. On /\ x e. On ) -> ( (/) +no x ) = ( x +no (/) ) ) with typecode |-
6 2 4 5 sylancr Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = ( x +no (/) ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = ( x +no (/) ) ) with typecode |-
7 naddrid Could not format ( x e. On -> ( x +no (/) ) = x ) : No typesetting found for |- ( x e. On -> ( x +no (/) ) = x ) with typecode |-
8 4 7 syl Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( x +no (/) ) = x ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( x +no (/) ) = x ) with typecode |-
9 6 8 eqtrd Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = x ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) = x ) with typecode |-
10 0ss B
11 simpl2 OrdABOnCOnxABOn
12 naddssim Could not format ( ( (/) e. On /\ B e. On /\ x e. On ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) : No typesetting found for |- ( ( (/) e. On /\ B e. On /\ x e. On ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) with typecode |-
13 2 11 4 12 mp3an2i Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) C_ B -> ( (/) +no x ) C_ ( B +no x ) ) ) with typecode |-
14 10 13 mpi Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) C_ ( B +no x ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( (/) +no x ) C_ ( B +no x ) ) with typecode |-
15 9 14 eqsstrrd Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x C_ ( B +no x ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> x C_ ( B +no x ) ) with typecode |-
16 simpl3 OrdABOnCOnxACOn
17 ontr2 Could not format ( ( x e. On /\ C e. On ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) : No typesetting found for |- ( ( x e. On /\ C e. On ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) with typecode |-
18 4 16 17 syl2anc Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( x C_ ( B +no x ) /\ ( B +no x ) e. C ) -> x e. C ) ) with typecode |-
19 15 18 mpand Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C -> x e. C ) ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A ) -> ( ( B +no x ) e. C -> x e. C ) ) with typecode |-
20 19 3impia Could not format ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A /\ ( B +no x ) e. C ) -> x e. C ) : No typesetting found for |- ( ( ( Ord A /\ B e. On /\ C e. On ) /\ x e. A /\ ( B +no x ) e. C ) -> x e. C ) with typecode |-
21 20 rabssdv Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ C ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } C_ C ) with typecode |-
22 1 21 ssexd Could not format ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) : No typesetting found for |- ( ( Ord A /\ B e. On /\ C e. On ) -> { x e. A | ( B +no x ) e. C } e. _V ) with typecode |-