| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 1 2 | eqeq12d |  | 
						
							| 4 | 3 | imbi2d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 5 6 | eqeq12d |  | 
						
							| 8 | 7 | imbi2d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 9 10 | eqeq12d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 13 14 | eqeq12d |  | 
						
							| 16 | 15 | imbi2d |  | 
						
							| 17 |  | oa0 |  | 
						
							| 18 |  | naddrid |  | 
						
							| 19 | 17 18 | eqtr4d |  | 
						
							| 20 |  | nnon |  | 
						
							| 21 |  | suceq |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | oasuc |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 |  | naddsuc2 |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 22 24 26 | 3eqtr4d |  | 
						
							| 28 | 27 | ex |  | 
						
							| 29 | 28 | expcom |  | 
						
							| 30 | 20 29 | syl |  | 
						
							| 31 | 30 | a2d |  | 
						
							| 32 | 4 8 12 16 19 31 | finds |  | 
						
							| 33 | 32 | impcom |  |