Metamath Proof Explorer


Theorem naddonnn

Description: Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025)

Ref Expression
Assertion naddonnn Could not format assertion : No typesetting found for |- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( A +no B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 oveq2 x=A+𝑜x=A+𝑜
2 oveq2 Could not format ( x = (/) -> ( A +no x ) = ( A +no (/) ) ) : No typesetting found for |- ( x = (/) -> ( A +no x ) = ( A +no (/) ) ) with typecode |-
3 1 2 eqeq12d Could not format ( x = (/) -> ( ( A +o x ) = ( A +no x ) <-> ( A +o (/) ) = ( A +no (/) ) ) ) : No typesetting found for |- ( x = (/) -> ( ( A +o x ) = ( A +no x ) <-> ( A +o (/) ) = ( A +no (/) ) ) ) with typecode |-
4 3 imbi2d Could not format ( x = (/) -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) ) ) : No typesetting found for |- ( x = (/) -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) ) ) with typecode |-
5 oveq2 x=yA+𝑜x=A+𝑜y
6 oveq2 Could not format ( x = y -> ( A +no x ) = ( A +no y ) ) : No typesetting found for |- ( x = y -> ( A +no x ) = ( A +no y ) ) with typecode |-
7 5 6 eqeq12d Could not format ( x = y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o y ) = ( A +no y ) ) ) : No typesetting found for |- ( x = y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o y ) = ( A +no y ) ) ) with typecode |-
8 7 imbi2d Could not format ( x = y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o y ) = ( A +no y ) ) ) ) : No typesetting found for |- ( x = y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o y ) = ( A +no y ) ) ) ) with typecode |-
9 oveq2 x=sucyA+𝑜x=A+𝑜sucy
10 oveq2 Could not format ( x = suc y -> ( A +no x ) = ( A +no suc y ) ) : No typesetting found for |- ( x = suc y -> ( A +no x ) = ( A +no suc y ) ) with typecode |-
11 9 10 eqeq12d Could not format ( x = suc y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o suc y ) = ( A +no suc y ) ) ) : No typesetting found for |- ( x = suc y -> ( ( A +o x ) = ( A +no x ) <-> ( A +o suc y ) = ( A +no suc y ) ) ) with typecode |-
12 11 imbi2d Could not format ( x = suc y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) : No typesetting found for |- ( x = suc y -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) with typecode |-
13 oveq2 x=BA+𝑜x=A+𝑜B
14 oveq2 Could not format ( x = B -> ( A +no x ) = ( A +no B ) ) : No typesetting found for |- ( x = B -> ( A +no x ) = ( A +no B ) ) with typecode |-
15 13 14 eqeq12d Could not format ( x = B -> ( ( A +o x ) = ( A +no x ) <-> ( A +o B ) = ( A +no B ) ) ) : No typesetting found for |- ( x = B -> ( ( A +o x ) = ( A +no x ) <-> ( A +o B ) = ( A +no B ) ) ) with typecode |-
16 15 imbi2d Could not format ( x = B -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) ) : No typesetting found for |- ( x = B -> ( ( A e. On -> ( A +o x ) = ( A +no x ) ) <-> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) ) with typecode |-
17 oa0 AOnA+𝑜=A
18 naddrid Could not format ( A e. On -> ( A +no (/) ) = A ) : No typesetting found for |- ( A e. On -> ( A +no (/) ) = A ) with typecode |-
19 17 18 eqtr4d Could not format ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) : No typesetting found for |- ( A e. On -> ( A +o (/) ) = ( A +no (/) ) ) with typecode |-
20 nnon yωyOn
21 suceq Could not format ( ( A +o y ) = ( A +no y ) -> suc ( A +o y ) = suc ( A +no y ) ) : No typesetting found for |- ( ( A +o y ) = ( A +no y ) -> suc ( A +o y ) = suc ( A +no y ) ) with typecode |-
22 21 adantl Could not format ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> suc ( A +o y ) = suc ( A +no y ) ) : No typesetting found for |- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> suc ( A +o y ) = suc ( A +no y ) ) with typecode |-
23 oasuc AOnyOnA+𝑜sucy=sucA+𝑜y
24 23 adantr Could not format ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = suc ( A +o y ) ) : No typesetting found for |- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = suc ( A +o y ) ) with typecode |-
25 naddsuc2 Could not format ( ( A e. On /\ y e. On ) -> ( A +no suc y ) = suc ( A +no y ) ) : No typesetting found for |- ( ( A e. On /\ y e. On ) -> ( A +no suc y ) = suc ( A +no y ) ) with typecode |-
26 25 adantr Could not format ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +no suc y ) = suc ( A +no y ) ) : No typesetting found for |- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +no suc y ) = suc ( A +no y ) ) with typecode |-
27 22 24 26 3eqtr4d Could not format ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = ( A +no suc y ) ) : No typesetting found for |- ( ( ( A e. On /\ y e. On ) /\ ( A +o y ) = ( A +no y ) ) -> ( A +o suc y ) = ( A +no suc y ) ) with typecode |-
28 27 ex Could not format ( ( A e. On /\ y e. On ) -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) : No typesetting found for |- ( ( A e. On /\ y e. On ) -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) with typecode |-
29 28 expcom Could not format ( y e. On -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) : No typesetting found for |- ( y e. On -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) with typecode |-
30 20 29 syl Could not format ( y e. _om -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) : No typesetting found for |- ( y e. _om -> ( A e. On -> ( ( A +o y ) = ( A +no y ) -> ( A +o suc y ) = ( A +no suc y ) ) ) ) with typecode |-
31 30 a2d Could not format ( y e. _om -> ( ( A e. On -> ( A +o y ) = ( A +no y ) ) -> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) : No typesetting found for |- ( y e. _om -> ( ( A e. On -> ( A +o y ) = ( A +no y ) ) -> ( A e. On -> ( A +o suc y ) = ( A +no suc y ) ) ) ) with typecode |-
32 4 8 12 16 19 31 finds Could not format ( B e. _om -> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) : No typesetting found for |- ( B e. _om -> ( A e. On -> ( A +o B ) = ( A +no B ) ) ) with typecode |-
33 32 impcom Could not format ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( A +no B ) ) : No typesetting found for |- ( ( A e. On /\ B e. _om ) -> ( A +o B ) = ( A +no B ) ) with typecode |-