Metamath Proof Explorer


Theorem nati

Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N=CNatD
natixp.2 φAFGNKL
natixp.b B=BaseC
nati.h H=HomC
nati.o ·˙=compD
nati.x φXB
nati.y φYB
nati.r φRXHY
Assertion nati φAYFXFY·˙KYXGYR=XLYRFXKX·˙KYAX

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 natixp.2 φAFGNKL
3 natixp.b B=BaseC
4 nati.h H=HomC
5 nati.o ·˙=compD
6 nati.x φXB
7 nati.y φYB
8 nati.r φRXHY
9 eqid HomD=HomD
10 1 natrcl AFGNKLFGCFuncDKLCFuncD
11 2 10 syl φFGCFuncDKLCFuncD
12 11 simpld φFGCFuncD
13 df-br FCFuncDGFGCFuncD
14 12 13 sylibr φFCFuncDG
15 11 simprd φKLCFuncD
16 df-br KCFuncDLKLCFuncD
17 15 16 sylibr φKCFuncDL
18 1 3 4 9 5 14 17 isnat φAFGNKLAxBFxHomDKxxByBfxHyAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAx
19 2 18 mpbid φAxBFxHomDKxxByBfxHyAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAx
20 19 simprd φxByBfxHyAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAx
21 7 adantr φx=XYB
22 8 ad2antrr φx=Xy=YRXHY
23 simplr φx=Xy=Yx=X
24 simpr φx=Xy=Yy=Y
25 23 24 oveq12d φx=Xy=YxHy=XHY
26 22 25 eleqtrrd φx=Xy=YRxHy
27 simpllr φx=Xy=Yf=Rx=X
28 27 fveq2d φx=Xy=Yf=RFx=FX
29 simplr φx=Xy=Yf=Ry=Y
30 29 fveq2d φx=Xy=Yf=RFy=FY
31 28 30 opeq12d φx=Xy=Yf=RFxFy=FXFY
32 29 fveq2d φx=Xy=Yf=RKy=KY
33 31 32 oveq12d φx=Xy=Yf=RFxFy·˙Ky=FXFY·˙KY
34 29 fveq2d φx=Xy=Yf=RAy=AY
35 27 29 oveq12d φx=Xy=Yf=RxGy=XGY
36 simpr φx=Xy=Yf=Rf=R
37 35 36 fveq12d φx=Xy=Yf=RxGyf=XGYR
38 33 34 37 oveq123d φx=Xy=Yf=RAyFxFy·˙KyxGyf=AYFXFY·˙KYXGYR
39 27 fveq2d φx=Xy=Yf=RKx=KX
40 28 39 opeq12d φx=Xy=Yf=RFxKx=FXKX
41 40 32 oveq12d φx=Xy=Yf=RFxKx·˙Ky=FXKX·˙KY
42 27 29 oveq12d φx=Xy=Yf=RxLy=XLY
43 42 36 fveq12d φx=Xy=Yf=RxLyf=XLYR
44 27 fveq2d φx=Xy=Yf=RAx=AX
45 41 43 44 oveq123d φx=Xy=Yf=RxLyfFxKx·˙KyAx=XLYRFXKX·˙KYAX
46 38 45 eqeq12d φx=Xy=Yf=RAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAxAYFXFY·˙KYXGYR=XLYRFXKX·˙KYAX
47 26 46 rspcdv φx=Xy=YfxHyAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAxAYFXFY·˙KYXGYR=XLYRFXKX·˙KYAX
48 21 47 rspcimdv φx=XyBfxHyAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAxAYFXFY·˙KYXGYR=XLYRFXKX·˙KYAX
49 6 48 rspcimdv φxByBfxHyAyFxFy·˙KyxGyf=xLyfFxKx·˙KyAxAYFXFY·˙KYXGYR=XLYRFXKX·˙KYAX
50 20 49 mpd φAYFXFY·˙KYXGYR=XLYRFXKX·˙KYAX