| Step | Hyp | Ref | Expression | 
						
							| 1 |  | natrcl.1 |  | 
						
							| 2 |  | natixp.2 |  | 
						
							| 3 |  | natixp.b |  | 
						
							| 4 |  | nati.h |  | 
						
							| 5 |  | nati.o |  | 
						
							| 6 |  | nati.x |  | 
						
							| 7 |  | nati.y |  | 
						
							| 8 |  | nati.r |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 1 | natrcl |  | 
						
							| 11 | 2 10 | syl |  | 
						
							| 12 | 11 | simpld |  | 
						
							| 13 |  | df-br |  | 
						
							| 14 | 12 13 | sylibr |  | 
						
							| 15 | 11 | simprd |  | 
						
							| 16 |  | df-br |  | 
						
							| 17 | 15 16 | sylibr |  | 
						
							| 18 | 1 3 4 9 5 14 17 | isnat |  | 
						
							| 19 | 2 18 | mpbid |  | 
						
							| 20 | 19 | simprd |  | 
						
							| 21 | 7 | adantr |  | 
						
							| 22 | 8 | ad2antrr |  | 
						
							| 23 |  | simplr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 23 24 | oveq12d |  | 
						
							| 26 | 22 25 | eleqtrrd |  | 
						
							| 27 |  | simpllr |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 |  | simplr |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 28 30 | opeq12d |  | 
						
							| 32 | 29 | fveq2d |  | 
						
							| 33 | 31 32 | oveq12d |  | 
						
							| 34 | 29 | fveq2d |  | 
						
							| 35 | 27 29 | oveq12d |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 | 35 36 | fveq12d |  | 
						
							| 38 | 33 34 37 | oveq123d |  | 
						
							| 39 | 27 | fveq2d |  | 
						
							| 40 | 28 39 | opeq12d |  | 
						
							| 41 | 40 32 | oveq12d |  | 
						
							| 42 | 27 29 | oveq12d |  | 
						
							| 43 | 42 36 | fveq12d |  | 
						
							| 44 | 27 | fveq2d |  | 
						
							| 45 | 41 43 44 | oveq123d |  | 
						
							| 46 | 38 45 | eqeq12d |  | 
						
							| 47 | 26 46 | rspcdv |  | 
						
							| 48 | 21 47 | rspcimdv |  | 
						
							| 49 | 6 48 | rspcimdv |  | 
						
							| 50 | 20 49 | mpd |  |